LESSON PLAN OF CHEMICAL ENGINEERING DEPARTMENT SUMMER 2024

Discipline:		Semester:	Name of F	Faculty: Rasmi Prabha Sahu		
		4th				
	:: Theory-1	No of Days	Semester From: 16 th JANUARY 2024 to 26 th APRIL 2024			
Organic	c Chemistry	per week	No of Wee	ek-15		
	-	class allotted				
Week	Class No	Class days	Chapter	Theory Topic		
				Chapter -1 IUPAC NOMENCLATURE		
1 st	1	1 st	1.1-1.2	Scope of organic chemistry. Differentiate between organic compound		
				and inorganic compounds		
	2	2 nd	1.3-1.4	Importance of organic Chemistry in modern life. Classification and		
				sources of organic compounds		
	3	3 rd	1.5	IUPAC naming of mono functional and poly functional Organic Compound		
	4	4 th	1.5	IUPAC naming of mono functional and poly functional Organic Compound.		
2 nd	5	1 st	1.5	IUPAC naming of mono functional and poly functional Organic Compound		
	6	2 nd	1.6	IUPAC naming of mono functional and poly functional Organic Compound		
	7	3 rd	1.7	Concept, type and example of isomerism		
	8	4 th	1.7	Concept, type and example of isomerism		
			Chapter -	2 ALIPHATIC COMPOUNDS		
3 rd	9	1 st	2.1	Methods of preparations, properties and uses of CH ₄ and C ₂ H ₅ .		
	10	2 nd	2.1	Methods of preparations, properties and uses of CH ₄ and C ₂ H ₅ .		
	11	3 rd	2.1	Methods of preparations, properties and uses of CH ₄ and C ₂ H ₅ .		
	12	4 th	2.2	Methods of preparations properties of ethylene.		
4 th	13	1 st	2.2	Methods of preparations properties of ethylene.		
	14	2 nd	2.3	Methods of preparation, properties and uses of acetylene.		
	15	3 rd	2.3 Methods of preparation, properties and uses of acetylene.			
	16	4 th	2.4	Methods of preparation properties and uses of methanol and ethanol		
5 th	17	1 st	2.4	Methods of preparation properties and uses of methanol and ethanol		
	18	2 nd	2.4	Methods of preparation properties and uses of methanol and ethanol		
	19	3 rd	2.5	Absolute alcohol and denatured alcohol.		
	20	4 th	2.5	Absolute alcohol and denatured alcohol.		

6 th	21	1 st	2.6	Methods of preparation properties and uses of formic acid and acetic acid.
~	22	2 nd	2.6	Methods of preparation properties and uses of formic acid and acetic acid.
	23	3 rd	2.6	Methods of preparation properties and uses of formic acid and acetic acid.
	24	4 th	2.6	Methods of preparation properties and uses of formic acid and acetic acid.
7 th	25	1 st	2.7	Methods of preparation properties and uses of formaldehyde and acetone.
<u> </u>	26	2 nd	2.7	Methods of preparation properties and uses of formaldehyde and acetone.
	27	3 rd	2.7	Methods of preparation properties and uses of formaldehyde and acetone.
	28	4 th	2.7	Methods of preparation properties and uses of formaldehyde and acetone.
	20			er -3 AROMATIC COMPOUNDS
8 th	29	1 st	3.1	Methods of preparation, properties and uses of
0	23	1	0.1	(a) Benzene (b) Toluene
	30	2 nd	3.1	Methods of preparation, properties and uses of
	00	2	0.1	(a) Benzene (b) Toluene
	31	3 rd	3.1	Methods of preparation, properties and uses of
	0.	0		(a) Benzene (b) Toluene
	32	4 th	3.1	Methods of preparation, properties and uses of
	-		-	(a) Benzene (b) Toluene
9 th	33	1 st	3.2	Methods of preparation, properties and uses of Benzene derivative
				compound
				(a) Phenol (b) Benzaldehyde
	34	2 nd	3.2	Methods of preparation, properties and uses of Benzene derivative
				compound
				(a) Phenol (b) Benzaldehyde
	35	3 rd	3.2	Methods of preparation, properties and uses of Benzene derivative
				compound
		. th		(a) Phenol (b) Benzaldehyde
	36	4 th	3.2	Methods of preparation, properties and uses of Benzene derivative
				compound
10 th	07	1 st		(a) Phenol (b) Benzaldehyde
10 th	37	1.	3.2	Methods of preparation, properties and uses of Benzene derivative
				compound (a) Phenol (b) Benzaldehyde
			Chart	
			Chapt	er -4 CARBOHYDRATES, PROTEINS & FATS

	38	2 nd	4.1	Classification of carbohydrates
	39	3 rd	4.1	Classification of carbohydrates
	40	4 th	4.1	Classification of carbohydrates
11 th	41	1 st	4.2	Synthesis and inter conversions of monosaccharides
	42	2 nd	4.2	Synthesis and inter conversions of monosaccharides
	43	3 rd	4.2	Synthesis and inter conversions of monosaccharides
	44	4 th	4.3	Manufacturing properties and uses of glucose, fructose, sucrose, and starch.
12 th	45	1 st	4.3	Manufacturing properties and uses of glucose, fructose, sucrose, and starch.
	46	2 nd	4.3	Manufacturing properties and uses of glucose, fructose, sucrose, and starch.
	47	3 rd	4.3	Manufacturing properties and uses of glucose, fructose, sucrose, and starch.
	48	4 th	4.3	Manufacturing properties and uses of glucose, fructose, sucrose, and starch.
13 th	49	1 st	4.4	Preparation, properties and uses of Amino acid
	50	2 nd	4.4	Preparation, properties and uses of Amino acid
	51	3 rd	4.4	Preparation, properties and uses of Amino acid
	52	4 th	4.4	Preparation, properties and uses of Amino acid
14 th	53	1 st	4.5	Classification of proteins, Peptides
	54	2 nd	4.5	Classification of proteins, Peptides
	55	3 rd	4.5	Classification of proteins, Peptides
	56	4 th	4.6	Properties and uses of proteins
15 th	57	1 st	4.6	Properties and uses of proteins
	58	2 nd	4.7	Sources, Properties and uses of fats.
	59	3 rd	4.7	Sources, Properties and uses of fats.
	60	4 th	4.7	Sources, Properties and uses of fats.

Discipline	: Chemical	Semester: 4 TH		Name of Faculty: Siddhibinayak Pradhan		
Subject: T	Theory-2	No of Days per	Semester From: 16 th January 2024 to 26 Th April 2024			
Heat Tran	sfer	week class	No of Week-15			
		allotted-4				
Week	Class No	Class days	Chapter	Theory Topic		
				- 1 : CONDUCTION		
1 st	1	1 st	1.1	Heat flow concept in conduction		
	2	2 nd	1.2	Steady state heat flow		
	3	3 rd	1.2	Unsteady state heat flow		
	4	4 th	1.3	State Fourier's law of conduction		
2 nd	5	1 st	1.4	Heat flow through single material		
	6	2 nd	1.5	Heat flow through composite walls		
	7	3 rd	1.6	Heat flow through cylinder		
	8	4 th	1.7	Heat flow through spheres		
3 rd	9	1 st	1.8	Heat flow in single and series medium		
	10	2^{nd}	1.9	Thermal insulation		
	11	3 rd	1.9	Critical radius of insulation		
	12	4 th	1.10	Solve simple numerical problems on conduction		
4 th	13	1 st	1.10	Solve simple numerical problems on conduction		
	14	2 nd	1.10	Solve simple numerical problems on conduction		
	15	3 rd	1.10	Solve simple numerical problems on conduction		
			Chapter –	2 : CONVECTION AND HEAT EXCHANGER		
	16	4 th	2.1	Concept of heat flow by convection		
5 th	17	1 st	2.2	Natural Convection		
	18	2 nd	2.2	Forced Convection		
	19	3 rd	2.3	Individual and overall heat transfer coefficient		
	20	4 th	2.4	Application of dimensional analysis in Convention		

6 th	21	1 st	2.5	Use of Empirical equations for different flow regime
	22	2 nd	2.6	Parallels, co current and counter current flow
	23	3 rd	2.7	Log mean temperature difference
	24	4 th	2.8	Classify heat exchanger
7 th	25	1 st	2.9	Construction and working of shell and tube heat exchanger
	26	2^{nd}	2.10	Multi pass and single pass heat exchanger
	27	3 rd	2.11	Derive energy balance for shell and tube heat exchanger
	28	4 th	2.12	Construction and operation of Finned tube heat exchanger
8 th	29	1 st	2.12	Construction and operation of Plate type heat exchanger
	30	2 nd	2.12	Construction and operation of Scrapped surface heat exchanger
	31	3 rd	2.13	Heat transfer in agitated vessel
	32	4 th	2.14	Define condensation
9 th	33	1 st	2.15	Drop wise and film type condensation
	34	2^{nd}	2.16	Problems on Heat Exchangers
	35	3 rd	2.16	Problems on Heat Exchangers
			Chapter	-3 RADIATION
	36	4 th	3.1	Principle of radiation heat transfer
10 th	37	1 st	3.2	Concept of black body
	38	2 nd	3.2	Emissivity and grey body
	39	3 rd	3.3	Mono chromatic emissive power
	40	4 th	3.3	Derivation of total emissive power
11 th	41	1 st	3.4	Kirchhoff's law
	42	2 nd	3.5	Stefan Boltzmann's law
	43	3 rd	3.6	Wien's law and Plank's law
	44	4 th	3.7	Estimate heat transfer by radiation

12 th	45	1 st	3.7	Solve problems on radiation
			Chapter	r -4 EVAPORATION
	46	2^{nd}	4.1	Objective of Evaporation
	47	3 rd	4.2	Performance, capacity, economy of evaporator
	48	4 th	4.2	Performance, capacity, economy of evaporator
13 th	49	1 st	4.3	Differentiate among various types of evaporators
	50	2^{nd}	4.3	Differentiate among various types of evaporators
	51	3 rd	4.4	Construction and operation of standard basket evaporator
	52	4 th	4.4	Construction and operation of long tube forced circulation type evaporator
14 th	53	1 st	4.5	Elementary principle of single and multiple effect evaporators
	54	2 nd	4.6	Material and energy balance of single effect evaporators
	55	3 rd	4.7	Solve simple problems on evaporators
	56	4 th	4.7	Solve simple problems on evaporators
15 th	57	1 st	4.7	Solve simple problems on evaporators
	58	2^{nd}	4.8	Boiling point elevation
	59	3 rd	4.8	Vapour recompression, mechanical recompression and thermal recompression
	60	4 th	4.8	Vapour recompression, mechanical recompression and thermal recompression

LESSON PLAN OF	4 TH SEMESTER(2023	-24) CHEMICAL ENGINEERING
DISCIPLINE:		NAME OF THE TEACHING FACULTY
	Semester:-4 TH	YK Mohanta
CHEMICAL		
	No of days per Week	
SUBJECT: TH3	Allotted : 04	No of Weeks:- 15
MASS TRANSFER- I	Anotted . 04	From 16 Jan to 26 April 2023
Week	Class/ Day	Theory/ Practical Topics
	2 nd	Importance of mass transfer operations
	210	General principle of mass transfer
1 ST	3 rd	operations
_	-	Classify mass transfer operations
	4 th	Molecular diffusion and inter
		phasediffusion
	1 st	Diffusion in gases and liquids
2 ND	2 nd	Explain Fick's law
_	3 rd	Explain mass transfer coefficient
	4 th	Solve problems on diffusion
	1 st	Solve problems on diffusion
	2 nd	Types of boiling point diagrams and
		enthalpy concentration diagrams
3 rd	3 rd	Vapour- liquid equilibrium
5	4 th	Relative volatility and derive an expression
		between & x-y
	1 st	Draw XY data (equilibrium curve) for
		different system in graph paper
	2 nd	Simple distillation & Derivation of
		Rayleigh's equation
4 th	3 rd	Simple distillation & Derivation of
		Rayleigh's equation
	4 th	Solve problems on Rayleigh's equation
	1 st	Solve problems on Rayleigh's equation
	2 nd	Flash distillation and material balance in
5 th		flash distillation
5	3 rd	Continuous rectification of binary system
	4 th	Continuous rectification of binary system
	1 st	Construction of rectification column
6 th	2 nd	Construction of rectification column
0	3 rd	Types of trays & re-boiler
	4 th	Types of trays & re-boiler
	1 st	Channeling, weeping, entrainment
		andflooding
	2 nd	Analyze fractionating column by McCabe
_+6		and Thiele Method and find out feed plate
7 th	3 rd	location (solve simple problems) Analyze fractionating column by McCabe
	5	and Thiele Method and find out feed
		plate
		location (solve simple problems)
	4 th	Analyze fractionating column by McCabe

		and Thiele Method and find out feed plate
	1 st	location (solve simple problems)
		Analyze fractionating column by McCabe
		and Thiele Method and find out feed plate location (solve simple problems)
	2 nd	Reflux ratio and concept of minimum,
8 th	2	optimum and total reflux ratio
	3 rd	Reflux ratio and concept of minimum,
		optimum and total reflux ratio
	4 th	Plate efficiency, Murphree's efficiency
	1 st	Steam distillation and its application
	2 nd	Azeotropic Distillation
9 th	3 rd	Extractive Distillation
	4 th	Solve problems on distillation
	1 st	Solve problems on distillation
	2 nd	Solve problems on distillation
10 th	3 rd	Principle of absorption
	4 th	Factors affecting rates of absorption
	1 st	Different equipment used for absorption
	2 nd	Different equipment used for absorption
11 th	3 rd	Types of packing materials used in
		absorption
	4 th	Regular and Random packing
	1 st	Loading, flooding and its effect on
		pressure drop
12 th	2 nd	Minimum gas-liquid ratio
	3 rd	HETP
	4 th	HTU & NTU
	1 st	Elementary ideas about spray tower
	2 nd	Elementary ideas about wetted wall
13 th		column
	3 rd	Solve simple problems on Absorption
	4 th	Solve simple problems on Absorption
14 TH	1 st	Principle of adsorption
	2 nd	Types of adsorption
	3 rd	Factors affecting adsorption
	4 th	Different types of adsorbents
15 [™]	1 st	Nature of adsorbents
	2 nd	Elutriation, percolation
	3 rd	Industrial application of adsorption
	4 th	Construction and operation of Industrial
		adsorption equipment

LESSON PLAN OF CHEMICAL ENGINEERING DEPARTMENT SUMMER 2024

Discipline: Chemical	Semester: 4 th	Name of Faculty: Sibasish Mahapatra		
Subject: Theory-4 Chemical Process Industries	No of Days per week class allotted: 4	No of Weeks:- 15 From 16 Jan to 26 April 2023		
Week	Class days	Chapter	Theory Topic	
1 st	1 st - 1	1	Understanding the concepts of Industries and how it works	
	2 nd -2		Concept of unit operation	
	3 rd -3		Unit Process and some examples	
	4 th -4		General principles applied in studying an industry	
2 nd	1 st – 5		Different types of flow sheets	
	2 nd -6		How to chose a process technology	
	3 rd -7		Understanding batch and continuous process	
	4 th -8		Revision of the topic	
3 rd	1 st - 9	2	Industrial gases and their application	
	2 nd -10		Manufacturing of hydrogen from propane and its properties	
	3 rd -11		Producer gas and how it is produced and its properties	
	4 th -12		Manufacturing of Water gas ; Carbureted Water gas and its properties	
4 th	1 st - 13		Haber's process for manufacturing ammonia and its properties	
	2 nd -14		Manufacturing of acetylene and its properties	
<u></u>	3 rd -15		Revision of the topic	
	4 th -16	3	Sulfuric acid and its properties	

5 th	1 st - 17		Wide range of applications of sulfuric acid
5			
	2 nd -18		Manufacturing of sulfuric acid by DCDA process with a flow sheet
	3 rd -19		Major engineering problems involved in the production of sulfuric acid
	4 th -20		Nitric acid, its properties and application
6 th	1 st - 21		Manufacturing of nitric acid by Ammonia oxidation and ostwald's process
	2 nd -22		Revision of the topic
	3 rd -23	4	Importance of chloro-alkali industry
	4 th -24		Applications of soda ash and its properties
7 th	1 st – 25	5	Applications of Caustic soda and its properties
	2 nd -26		Manufacturing of soda ash by Solvay process
	3 rd -27		Manufacturing of caustic soda by electrolysis of brine
	4 th -28		Different types of electrolytic cells
8 th	1 st – 29		Revision of the topic
	2 nd -30		Manufacture of pulp by sulfate and sulfite process
	3 rd -31		Manufacture of paper by wet process
	4 th -32		Recovery of chemicals from black liquor
9 th	1 st - 33		Different types of paper and their applications
	2 nd -34		Additives used in the paper industry and their uses
	3 rd -35		Revision of the topic
	4 th -36	6	Explain different types of cement, its constituents; characteristics
10 th	1 st - 37		Lime stone beneficiation with a flow sheet
	2 nd -38		Manufacturing of Portland cement by wet and dry process

	3 rd -39		Additives used in the cement industry and their application
	4 th -40		Factors affecting cement industry; importance of mini cement plant
11 th	1 st - 41		Revision of the topic
	2 nd -42	7	Methods of manufacturing cast iron
	3 rd -43		Discuss the properties and application of different kinds of iron
	4 th -44		Manufacturing of sponge iron
12 th	1 st – 45		Manufacturing of wrought iron
	2 nd -46		Discuss the methods of manufacturing of steel
	3 rd -47		Manufacture of alumina from bauxite by Bayer's process
	4 th -48		Extraction of alumina by Hoope's process
13 th	1 st - 49		Manufacture of rare earth elements and their application
	2 nd -50		Revision of the topic
	3 rd -51	8	Classify different fertilizers
	4 th -52		Manufacture Urea with a flow sheet
14 th	1 st – 53		Manufacture Calcium ammonium nitrate with a flow sheet
	2 nd -54		Manufacture Single Super Phosphate with a flow sheet
	3 rd -55		Manufacture Triple super phosphate with a flow sheet
	4 th -56		Manufacture Ammonium Phosphate with a flow sheet
15 th	1 st – 57		Manufacture nitrophosphate and sodium phosphate with a flow sheet
	2 nd -58		Discuss about mixed fertilizers and additives used in fertilizer industry
	3 rd -59		Revision of the topic
	4 th -60		Discussion of previous year questions