UMA CHARAN PATNAIK ENGINEERING SCHOOL, BERHAMPUR ## **LESSONPLAN** **SESSION-2024-25** **SUBJECT: STRENGTH OF MATERIAL (THEORY-02)** ## DEPARTMENT OF MECHANICAL ENGINEERING | Discipline:
Mechanical Engineering | Semester:3rd | Name of the Teaching Faculty: DEBASHISH BISI | |--|--|---| | Subject:
Strength of Material
(Th-2) | No of Days/Week
Class Allotted:
04 | No of Week:15 | | Week | Class/Day | Theory Topics | | 1 st | 1 st | CH.1 SIMPLESTRESS&STRAIN. Introduction to Strength of Material. Types of load, stresses & strains (Axial and tangential) | | | 2 nd | Poisson's ratio, Lateral and Linear strain. Numerical to Find stress, strain, elongation and Poisson's ratio. | | | 3 rd | Hooke's law. Young's modulus, bulk modulus, modulus of rigidity, Relation between E&C,E&K. | | | 4 th | Relation between three Elastic constants. Numerical | | | 1 st | Principle of superposition. Numerical | | 2 nd - | 2 nd | Numerical on above. | | | 3 rd | Numerical on above. | | | 4 th | Stresses in composite section. Numerical | | | 1 st | Temperature stress and strain, Temperature stress in Composite bar (single core).Numerical | | and | 2 nd | Numerical on above. | | 3 rd - | 3 rd | Strain energy and resilience, Stress due to gradually Applied load. | | | 4 th | Stress due to suddenly applied and impact load | | | 1 st | CH.2THINCYLINDERANDSPHERICALSHELLUNDER INTERNAL PRESSURE. IntroductiontoThincylinderandsphericalshell. Assumption for thin cylindrical shell.Hoop and | | 4 th | | longitudinal stress and strain. | | | 2 nd | Determination of hoopstress and longitudinal stress. | | | 3 rd | Numerical to finds a fepressure, thickness and diameter. | | | 4 th | DeterminationofHoopstrain,longitudinalstrainand volumetric strain | | 5 th | 1 st | Determination of Change in length, diameter and volume of thin cylindrical shell. | | | 2 nd | Numericaltofindchangeindimensionsofthincylindrical shell. | | | 3 rd | Numericaltofindchangeindimensionsofthincylindrical shell. | | | | CH.3.TWO-DIMENSIONALSTRESSSYSTEM. | | | 4 th | Introductionto2-dimensionalstresssystem; Conceptof Principalplane, Principalstressandstrain; Stressesin oblique plane | | 6 th | 1 st | Determination of normal stress, shear stress and resultant stress on an oblique plane of abody which subjectedto(i)directstressinonedirectiononly. Numerical | | | 2 nd | Numerical | | | 3 rd | Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (ii) direct stress in two perpendicular directions. Numerical | |------------------|------------------------|--| | | 4 th | Numerical. | | 7 th | 1 st | Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (iii) shear stress only; Numerical | | | 2 nd | Numerical. | | | 3 rd | Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which subjected to (iv) direct stress in one direction and followed by shear stress. Problem | | | 4 th | Numerical on above. | | 8 th | 1 st | Determination of normal stress, shear stress and resultant stress on an oblique plane of a body which Subjected to (iv) direct stress in two perpendicular directions and followed by shear stress. Problem. | | | 2 nd | Numerical on above. | | | 3 rd | Concept of Mohr's circle. Mohr's circle Problems. | | | 4 th | Mohr's circle Problems. | | | 1 st | Classtest1 | | | 2 nd | CH.4BENDINGMOMENTANDSHEAR FORCE. Types of beam and load. Concepts of Shear force and bending moment. | | 9 th | 3 rd | Sign convention. Relationship between SF, BM and Loading | | | 4 th | Numerical to determine Shear Force and Bending moment diagram in cantilever beam subjected to point load. | | | 1 st | Numerical to determine Shear Force and Bending moment diagram in cantilever beam subjected to U.D.L | | | 2 nd | Numerical to determine Shear Force and Bending moment diagram in simply supported beam subjected to point load. | | 10 th | 3 rd | Numerical to determine Shear Force and Bending moment diagram in simply supported beam subjected U.D.L. | | | 4 th | Numerical to determine Shear Force and Bending moment diagram in over hanging beam subjected to point load. | | 11 th | 1 st | Numerical to determine Shear Force and Bending moment diagram in overhanging beam subjected U.D.L. | | | | CH.5THEORYOFSIMPLEBENDING. | | 11 th | 2 nd | Introduction to Theory of simple bending, Assumptions in the theory of bending | | 11 th | 2 nd | | | 12 th | 1 st | Section modulus of rectangular and circular beam sections | |------------------|-----------------|--| | | 2 nd | Numerical | | | 3 rd | Numerical | | | 4 th | CH.6COMBINEDDIRECTANDBENDINGSTRESS. Define column, types of column, Axial load, Eccentric load on column. | | 13 th | 1 st | Direct stresses, Bending stresses, Maximum & Minimum stresses in short column: for uniaxial system | | | 2 nd | Direct stresses, Bending stresses, Maximum & Minimum stresses in short column: for biaxial system | | | 3 rd | Numerical | | | 4 th | Buckling load computation using Euler's formula(no derivation) in Columns with various end conditions | | 14 th | 1 st | Numerical on above. | | | 2 nd | CH.7 TORSION. Torsion in shafts , Assumption of pure torsion | | | 3 rd | Theory of pure torsion | | | 4 th | Torsion equation for solid and hollow circular shaft, Numerical | | 15 th | 1 st | Comparison between solid and hollow shaft subjected to pure torsion, torsional rigidity, Numerical | | | 2 nd | Numerical | | | 3 rd | Classtest2 | | | 4 th | Previous year question discussion. |