UCPES, BERHAMPUR

LESSON PLAN

Session (2025-2026)

Discipline:	Semester:	Name of the Teaching Faculty:
Mechanical	3 rd , Winter/2025	RAMA KRISHNA SAHU
Engineering		LECTURE STAGE-II
		DEPARTMENT OF MECHANICAL ENGINEERING
Subject:	No. of Days/Week:	Start Date: 11/07/2025
MEPC209	03	End Date: 15/11/2025
Manufacturing Processes,		
Theory-1		

Week	Class Day	Theory Topics
	1st	Cutting Fluids & Lubricants: Introduction; Types of cutting fluids,
1st	2nd	Fluids and coolants required in turning, drilling, shaping, sawing & broaching;
181	3rd	Selection of cutting fluids, methods of application of cutting fluid;
	1st	Classification of lubricants (solid, liquid, gaseous),
2nd	2nd	Properties and applications of lubricants
	3rd	Lathe Operations: Types of lathes – light duty, medium duty and heavy duty geared lathe,
	1st	CNC lathe; Specifications; Basic parts and their functions;
3rd	2nd	Operations and tools – Turning, parting off, Knurling, facing, Boring, drilling, threading, step turning, taper turning,
	3rd	Operations and tools – Turning, parting off, Knurling, facing, Boring, drilling, threading, step turning, taper turning, -continue
	1st	Nomenclature of single point cutting tool of lathe.
4th	2nd	Broaching Machines: Introduction to broaching;
	3rd	Types of broaching machines – Horizontal type (Single ram & duplex ram), Vertical type, pull up, pull down, and push down;

	1	
	1st	Types of broaching machines – Horizontal type (Single ram & duplex ram), Vertical type, pull up, pull down, and push down; -continue
5th	2nd	Elements of broach tool;
	3rd	broach teeth details; Nomenclature; Tool materials.
	1st	Drilling: Classification;
6th	2nd	Basic parts and their functions; Radial drilling machine;
	3rd	Types of operations; Specifications of drilling machine;
	1st	Types of drills and reamers.
746	2nd	Welding: Classification; Gas welding techniques;
7th	3rd	Types of welding flames; Arc Welding – Principle, Equipment, Applications;
	1st	Shielded metal arc welding; Submerged arc welding;
8th	2nd	TIG / MIG welding
	3rd	Resistance welding - Spot welding, Seam welding, Projection welding;
	1st	Welding defects; Brazing and soldering: Types, Principles, Applications
9th	2nd	Milling: Introduction; Types of milling machines:
	3rd	Plain, Universal, vertical; constructional details – specifications;
10th	1st	Milling operations: simple, compound and differential indexing; Milling cutters – types; Nomenclature of teeth; Teeth materials; Tool signature of milling cutter; Tool & work holding devices.
	2nd	Gear Making: Manufacture of gears – by Casting, Moulding, Stamping, Coining Extruding,
	3rd	Rolling, Machining; Gear generating methods: Gear Shaping with pinion cutter & rack cutter;
	1st	Gear hobbing; Description of gear hob;
11th	2nd	Operation of gear hobbing machine; Gear finishing processes;
	3rd	Gear materials and specification; Heat treatment processes applied to gears
12th	1st	Press working: Types of presses and Specifications,
	2nd	Press working operations - Cutting, bending, Drawing, punching, blanking, notching, lancing;

	3rd	Die set components- punch and die shoe, guide pin, bolster plate, stripper, stock guide, feed stock, pilot; Punch and die clearances for blanking and piercing, effect of clearance.
	1st	Die set components- punch and die shoe, guide pin, bolster plate, stripper, stock guide, feed stock, pilot; Punch and die clearances for blanking and piercing, effect of clearancecontinue
13th	2nd	Grinding and finishing processes: Principles of metal removal by Grinding
	3rd	Abrasives – Natural & Artificial; Bonds and binding processes: Vitrified, silicate, shellac, rubber, Bakelite; Factors affecting the selection of grind wheels: size and shape of wheel
14th	1st	kind of abrasive, grain size, grade and strength of bond, structure of grain, spacing, kinds of bind material; Standard marking systems: Meaning of letters & numbers sequence of marking,
	2nd	Grades of letters; Grinding machines classification-: Cylindrical, Surface
	3rd	Tool & Cutter grinding machines; Construction details; Principle of centerless grinding; Advantages & limitations of centerless grinding; Finishing by grinding:
	1st	Honing, Lapping, Super finishing; Electroplating: Basic principles, Plating metals, applications; Hot dipping: Galvanizing,
15th	2nd	Tin coating, Parkerizing, Anodizing; Metal spraying: wire process,
	3rd	powder process and applications; Organic coatings: Oil base Paint, Lacquer base, Enamels, Bituminous paints, rubber base coating; Finishing specifications.

Signature of Concerned Teacher

UMA CHARAN PATNAIK ENGINEERING SCHOOL, BERHAMPUR

LESSONPLAN

SESSION-2025-26

SUBJECT: STRENGTH OF MATERIAL (THEORY-02)

DEPARTMENT OF MECHANICAL ENGINEERING

Discipline: Mechanical Engineering	Semester:3rd	Name of the Teaching Faculty: DEBASHISH BISI
Subject (Th-2): Strength of Material	No of Days/Week Class Allotted: 03	No of Week: 15
Week	Class/Day	Theory/Practical Topics
	1 st	CH.1 Simple Stresses and Strains: Types of forces
	2 nd	Stress, Strain and their nature
1 st	3 rd	Mechanical properties of common engineering materials
	1 st	Significance of various points on stress – strain diagram for M.S. specimens
2 nd	2 nd	Significance of various points on stress – strain diagram for C.I. specimens
	3 rd	Significance of factor of safety
	1 st	Elastic constants. Relation between elastic constants
3 rd	2 nd	Stress and strain values in bodies of uniform section under the influence of normal forces
	3 rd	Stress and strain values in bodies of of composite section under the influence of normal forces
	1 st	Thermal stresses in bodies of uniform section& composite sections
	2 nd	Related numerical problems on the above topics.
4 th	3 rd	Strain Energy: Strain energy or resilience, proof resilience and modulus of resilience; Derivation of Strain energy for the Gradually applied load,
	1 st	Derivation of Strain energy for the Suddenly applied load , Impact/ shock load
	2 nd	Related numerical problems
5 th	3 rd	CH.2 Shear Force & Bending Moment Diagrams: Types of beams with examples: a)Cantilever beam, b)Simply supported beam, c)Overhanging beam, d)Continuous beam, e) Fixed beam; Types of Loads – Point load, UDL and UVL
	4 ct	Definition and explanation of shear force and bending moment; Calculation of shear force and bending moment
6 th	1 st 2 nd	Drawing the S.F and B.M. diagrams by the analytical method only for Cantilever with point loads and uniformly distributed load
	3 rd	Drawing the S.F and B.M. diagrams by the analytical method only for Simply supported beam with point loads, UDL
	1 st	Drawing the S.F and B.M. diagrams by the analytical method only for Cantilever with point loads,
7 th	2 nd	Drawing the S.F and B.M. diagrams by the analytical method Overhanging beam with point loads at the centre & at free ends,

		Drawing the C.F. and D.M. diagrams by the small tirely will be
		Drawing the S.F and B.M. diagrams by the analytical method
	3 rd	Over hanging beam with UDL throughout Combination of point
		and UDL for the above; Related numerical problems.
8 th	1 st	CH.3. Theory of Simple Bending and Deflection of Beams: Explanation of terms: Neutral layer, Neutral Axis, Modulus of Section, Moment of Resistance, Bending stress, Radius of curvature
	2 nd	Assumptions in theory of simple bending;
	3 rd	Bending Equation M/I =σ/Y=E/R with derivation
	1 st	Problems involving calculations of bending stress, modulus of section and moment of resistance; Calculation of safe loads and safe span and dimensions of cross- section
9th	2 nd	Definition and explanation of deflection as applied to beams
9	3 rd	Deflection formulae without proof for cantilever and simply supported beams with point load only (Standard cases only);
	1 st	Deflection formulae without proof for cantilever and simply supported beams with UDL only (Standard cases only);
	2 nd	Related numerical problems.
		Ch iv. Torsion in Shafts and Springs:
10 th	3 rd	Definition and function of shaft
	1 st	Calculation of polar M.I. for solid shafts & hollow shafts
11 th	2 nd	Assumptions in simple torsion. Derivation of the equation T/J=f $_{S}/R$ = G0/L
11."	3 rd	Problems on design of shaft based on strength and rigidity
	1 st	Numerical Problems related to comparison of strength and weight of solid and hollow shafts
	2 nd	Numerical Problems related to comparison of strength and weight of solid and hollow shafts
12 th	3 rd	Classification of springs; Nomenclature of closed coil helical spring
	1 st	Deflection formula for closed coil helical spring (without derivation);
13 th	2 nd	stiffness of spring
	3 rd	Numerical problems on closed coil helical spring to find safe load, deflection, size of coil and number of coils.
	1 st	Numerical problems on closed coil helical spring to find safe load, deflection, size of coil and number of coils.
14 th	2 nd	Unit-V: Thin Cylindrical Shells: Explanation of longitudinal and hoop stresses in the light of circumferential and longitudinal failure of shell;
	3 rd	Derivation of expressions for the Longitudinal and hoop stress for seamless
	1 st	Derivation of expressions for the Longitudinal and hoop stress for seamshells
15 th	2 nd	Related numerical Problems for safe thickness and safe working pressure
	3 rd	Previous year question discussion.

LESSON PLAN OF MECHANICAL ENGINEERING DEPARTMENT WINTER 2025

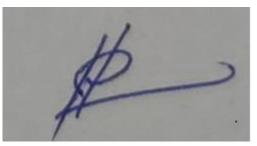
Discipline: MECI	HANICAL	Semester: 3 rd		Faculty: Sushri Priyanka Panigrahi
	es & Fluid Power	No of Days per week class allotted Class		From: 14 th July to 11 th November 2025
Week	Class No	days	Chapter	
	1	1 st		Definition of a fluid, classification of fluids, various fluid pro
1 st	2	2 nd		viscosity and surface tension and state the units
	3	3rd		fluid pressure, total pressure (hydrostatic force) and locatio
2nd	4	1 st	1	Hydro-static force on horizontal and inclined surfaces by fluid
Ziiu	5	2 nd		Hydro-static force oncurved surfaces by fluid
	6	3rd		working of various measuring devices for pressure, the prin
,	7	1 st		simple, differential and inverted types of manometer
3 rd	8	2 nd		principle of buoyancy and floatation.
	9	3rd		Simple numericals on Manometer
	10	1 st		Various types of flow, circulation and vorticity, stream-line,
4 th	11	2nd	1	Bernoulli's theorem, the limitations of same-application of B
	12	3rd	2	the working of venturimeter, pitot tube, equation of flow rat
T4h	13	1st	1	The working ofpitot tube
5 th	14	2 nd 3 rd	1	the working of flowmeter: current meter
	15 16	1 st		Simple numericals Definition –orifice, orifice coefficient such as Cc, Cv, Cd, Rela
6 th	17	2 nd	1	weir and notch, Discharge over rectangular notch and weir,
0.	18	3rd		Discharge overtriangular notch
	19	1 st		Simple numericals
7 th	20	2nd	1	Definition of a pipe. laws of fluid friction, Equation of loss of
	21	3 rd		hydraulic gradient and total energy line, Nozzle and its appli
	22	1st	3	Power transmission through nozzle
	23	2 nd		The condition of maximum power transmission through noz
8 th	24	3 rd		Expression for diameter of nozzle for maximum power trans
	25	1 st		Classification of hydraulic turbines, Selection of turbine on t
9 th	26	2 nd		Francis and Kaplan turbines. Draft tubes – types and constru
	27	3rd		Calculation of Work done, Power, efficiency of turbines. Sim
	28	1 st	1	Centrifugal Pumps: Principle of working and applications, Ty
10 th	29	2 nd		Concept of multistage, Priming andits methods,
	30	3rd		Manometric head, Work done
	31	1 st	4	Manometric efficiency, Overall efficiency, Simple numericals
11 th	32	2 nd		Reciprocating Pumps: Construction, working principle and a acting reciprocating pumps
	33	3rd	1	Construction, working principle and applications of doubleac
	34	1st	-	Concept of Slip, Negative slip,
12 th	35	2 nd	1	Cavitation and separation
400	36	3rd		Simple numericals
13 th	37	1 st	5	Definition of fluid power, classification – hydraulic power ar

	38	2 nd		Hydraulic Systems -Basic principle of enclosed hydraulic s
	39	3 rd		direction control valves, flow control valves, actuators (lir
	40	1 st		accumulator, pipes and fittings
14 th	41	2 nd	,	various positive displacement pumps-gear
	42	3 rd		vane, piston
	43	1 st		drawing of hydraulic circuits - extension of linear actuator
15 th	44	2 nd		drawing of hydraulic circuits - retraction of linear actuato
	45	3rd		motion of rotary actuator, holding a job, hydraulic press e

Signature of the faculty

UCPES, BERHAMPUR

LESSON PLAN


Session (2025-2026)

Discipline:	Semester:	Name of the Teaching Faculty:
Mechanical	3 rd , Winter/2025	HADU BANDHU DAKUA
Engineering		LECTURE STAGE-I MECHANICAL ENGINEERING DEPARTMENT
Subject:	No. of Days/Week:	Start Date: 11/07/2025
MEPC209	03	End Date: 15/11/2025
Thermal Engineering-I,		
Theory-5		

Week	Class Day	Theory Topics
	1st	Introduction to Thermodynamics: Thermodynamic Systems (closed, open, isolated)
1st	2nd	Thermodynamic properties of a system (pressure, volume, temperature, entropy, enthalpy;, Internal energy and units of measurement)
	3rd	Intensive and extensive properties; Define thermodynamic processes, path, cycle, state, path function, point function.
	1st	Thermodynamic Equilibrium; Quasi-static Process; Laws of thermodynamics (statements only)
2nd	2nd	Sources of Energy: Brief description of energy Sources: Classification of energy sources.
	3rd	Renewable, Non-Renewable; Fossil fuels (CNG & LPG)
	1st	Solar Energy: Flat plate and concentrating collectors
3rd	2nd	& its applications (working principles of Solar Water Heater, Photovoltaic Cell,
	3rd	Solar Distillation); Definitions of Wind Energy
	1st	Tidal Energy; Ocean Thermal Energy; Geothermal Energy; Biogas, Biomass, Bio-diesel; Hydraulic Energy, Nuclear Energy; Fuel cell.
4th	2nd	Internal Combustion Engines: Assumptions made in air standard cycle analysis;
	3rd	Brief description of Carnot, Otto.

	1st	and Diesel cycles with P-V and T-S diagrams.
5th	2nd	Internal and external combustion engines; advantages of I.C. engines over external combustion engines
Sui	3rd	classification of I.C. engines; neat sketch of I.C. engine indicating component parts;
6th	1st	Function of each part and materials used for the component parts - Cylinder, crank case, crank pin, crank, crank shaft, connecting rod, wrist pin, piston
our	2nd	cooling pins cylinder heads, exhaust valve, inlet valve; Working of four-stroke and two stroke petrol and diesel engines:
	3rd	Comparison of two stroke and four stroke engines
	1st	Comparison of C.I. and S.I. engines; Valve timing and port timing diagrams for four stroke and two stroke engines
7th	2nd	I.C. Engine Systems: Fuel system of Petrol engines; Principle of operation of simple and Zenith carburetors.
	3rd	Fuel system of Diesel engines; Types of injectors and fuel pumps;
	1st	Cooling system: air-cooling, water-cooling system with thermo siphon method of circulation and water cooling system with radiator and forced circulation n.
8th	2nd	and water-cooling system with radiator and forced circulation.
	3rd	Comparison of air cooling and water-cooling system;
	1st	Ignition systems – Battery coil ignition and magneto ignition
9th	2nd	Comparison of two systems; Types of lubricating systems used in I.C. engines with line diagram;
	3rd	Types of governing of I.C. engines – hit and miss method, quantitative method,
	1st	qualitative method and combination methods of governing; their applications; Objective of super charging
10th	2nd	Performance of I.C. Engines: Brake power; Indicated power;
	3rd	Frictional power; Brake and Indicated mean effective pressures;
	1st	Brake and indicated thermal efficiencies.
11th	2nd	Mechanical efficiency;
	3rd	Relative efficiency.
12th	1st	Performance test;
	2nd	Morse test;
	3rd	Heat balance sheet.
	1st	Methods of determination of B,P., I.P. and F.P.; Simple numerical problems on performance of I.C. engines
13th	2nd	Air Compressors: Functions of air compressor; Uses of compressed air;
	3rd	Types of air compressors; Single stage reciprocating air compressor.

	1st	its construction and working (with line diagram) using P-V diagram.
14th	2nd	Multi stage compressors – Advantages over single stage compressors;
	3rd	Rotary compressors: Centrifugal compressor, axial flow type compressor and vane type compressors
	1st	Refrigeration & Air-conditioning: Refrigeration; Refrigerant, COP;
15th	2nd	Air Refrigeration system: components, working & applications; Vapour Compression system: components, working & applications; Air conditioning;
	3rd	Classification of Air- conditioning systems; Comfort and Industrial Air-Conditioning; Window Air- Conditioner; Summer Air-Conditioning system, Winter Air-Conditioning system, Year-round
		Conditioning system, Winter Air-Conditioning system, Year-rou Air-Conditioning system.

Signature of Concerned teacher