Discipline- Electrical Engg.	Semester-5 th	Name of the teaching facualty- SWARNAPRABHA PANIGRAHI		
Subject- Ec-II	No of days/week	No of weeks-15		
	class allotted-5	From 14/7/25		
Week	Class day	Theory topic		
1	1 st	THREE PHASE INDUCTION MOTOR-Introduction		
	2 nd	Explain and derive production of rotating magnetic field		
	3 rd	Explain constructional feature of Squirrel cage and Slip ring induction motors		
	4 th	Explain principles of operation of 3-phase Inductionmotor		
		Explain slip speed, slip and slip relation with rotorquantities		
2	1 st	Numerical problems		
	2 nd	Derive Torque during starting conditions for maximum torque. (solve numericalproblems)		
	3 rd	Derive Torque during running conditions for maximum torque. (solve numericalproblems)		
	4 th	Numerical problems		
		Derive Torque-slipcharacteristics		
3	1 st	Derive relation between full load torque and starting torque etc. (solve numericalproblems)		
	2 nd	Numerical problems		
	3 rd	Determine the relations between Rotor Copper loss, Rotor output and Gross Torque, and		
		relationship of slip with rotor copper loss. (solve numericalproblems)		
	4 th	Numerical problems		
		Explain principle of Induction Generator and state its applications		
4	1 st	Explain and state Methods of starting and different types of starters.		
	2 nd	Explain speed control by Voltage Control, Rotor resistance control, pole changing, frequency		
		control methods.		
	3 rd	Describe plugging applicable to three phase induction motor		
	4 th	Describe different types of motor enclosures		
		Doubt clearance		
5	1 st	ALTERNATOR-		
	2 nd	Introduction		
	3 rd	State types of alternator and their constructional features		
	4 th	Explain working principle of alternator and establish the relation between speed and frequency		

		Explain terminology in armature winding			
6	1 st	derive expressions for winding factors (Pitch factor & distribution factor)			
	2 nd	Solve numerical			
	$3^{\rm rd}$	Explain harmonics, its causes and impact on windingfactor			
	4 th	DeriveE.M.Fequation.(Solve numericalproblems)			
		Solve Numericals			
7	1 st	Explain Armature reaction and its effect on emf at different pf ofload			
	2 nd	Draw the vector diagram of loaded alternator. (Solve numericalproblems)			
	3 rd	Solve Numericals			
	4 th	State and explain testing of alternator -open circuit Test & Short circuit test			
		Solve Numericals			
86	1 st	Determination of voltage regulation of Alternator by direct loading and synchronous			
		impedancemethod			
	2^{nd}	Explain parallel operation of alternator using synchro-scope, dark and bright lampmethod			
	3 rd	Explain distribution of load by parallel connectedalternators			
	4 th	SYNCHRONOUS MOTOR- Explain constructional feature of SynchronousMotor			
		Explain principles of operation, concept of loadangle			
9	1 st	Explain effect of varying load with constant excitation			
		Explain effect of varying excitation with constantload			
	2 nd	Derive torque, powerdeveloped-solve numerical			
	$3^{\rm rd}$	Explain power angle characteristics of cylindrical rotormotor			
	4 th	Explain effect of excitation on Armature current and powerfactor			
		Explain Hunting & function of DamperBars			
10	1 st	State application of synchronousmotor			
	2 nd	Describe method of starting of Synchronousmotor			
	$3^{\rm rd}$	Doubt clearance			
	4 th	SINGLE PHASE INDUCTION MOTOR-			
		Explain Rotating – field theory of 1-phase inductionmotor			
11	1 st	Explain Ferrari'sprinciple			
	2 nd	Explain Working principle, Torque speed characteristics, performance characteristics and application of Split phasemotor			

	3 rd	Explain Working principle, Torque speed characteristics, performance characteristics and			
		application of Capacitor Startmotor			
	4 th	Explain Working principle, Torque speed characteristics, performance characteristics and			
		application of Capacitor start, capacitor runmotor			
		Explain Working principle, Torque speed characteristics, performance characteristics and			
		application of Permanent capacitor typemotor			
12	1 st	Explain Working principle, Torque speed characteristics, performance characteristics and			
	2 nd	application of Shaded polemotor			
	2	Explain the method to change the direction of rotation of Split phasemotor, Capacitor			
		Startmotor, Capacitor start, capacitor runmotor, Permanent capacitor typemotor & Shaded Pole motor			
	3 rd	Doubt clearance			
	4 th	COMMUTATOR MOTORS- introduction			
		Explain construction of single phase series motor			
13	1 st	working principle, running characteristic and application of single phase series motor			
	2 nd	Explain construction, working principle and application of Universal motors			
	3 rd	Explain working principle of Repulsion start Motor, Repulsion start Induction run motor			
	4 th	Explain working principle of Repulsion Induction motor			
		Brief discussion about all the motors-Doubt clearance			
14	1 st	Principle of Stepper motor			
	2 nd	Classification of Stepper motor			
	3 rd	Principle of variable reluctant stepper motor			
	4 th	Principle of Permanent magnet stepper motor			
		Principle of hybrid stepper motor			
	Applications of Stepper motor				
15	1 st	THREE PHASE TRANSFORMERS-introduction			
	2 nd	Explain Grouping of winding, Advantages			
	3 rd	Explain parallel operation of the three phase transformers			
	4 th	Explain tap changer (On/Off load tap changing)			
		State maintenance of Transformers			

Discipline- Electrical Engg.	Semester-5 th	Name of the teaching facualty- Sidharth Sankar Sahu & SwarnaprabhaPanigrahi			
Subject- Electrical	No of				
Machine Lab-II	days/week	No of weeks-15			
	class allotted-	From 14/7/25			
	6				
Week	Class day	Practical topic			
1	1 st	Study of (Manual and Semi automatic) Direct on Line starter, Star-Delta starter, connection and running a 3-phase Induction motor and measurement of starting current			
	2 nd	Practical observation, conclusion ,record correction			
2	1 st	Study of (Manual and Semi automatic) Auto transformer starter and rotor resistance starter connection and running a 3-phase induction motor and measurement of starting current			
	2 nd	Practical observation, conclusion ,record correction			
3	1 st	Study and Practice of connection & Reverse the direction of rotation of Three Phase Induction motor			
	2 nd	Practical observation, conclusion ,record correction			
4	1 st	Study and Practice of connection & Reverse the direction of rotation of Single Phase Induction motor			
	2 nd	Practical observation, conclusion ,record correction			
5	1 st	Heat run test of 3-phase transformer			
	2 nd	Practical observation, conclusion ,record correction			
6	1 st	OC and SC test of alternator and determination of regulation by synchronous impedance method			
	2 nd	Practical observation, conclusion, record correction			
7	1 st	Determination of regulation of alternator by direct loading			
	2 nd	Practical observation, conclusion, record correction			
8	1 st	Parallel operation of two alternators and study load sharing			
	2 nd	Practical observation, conclusion ,record correction			
9	1 st	Measurement of power of a 3-phase Load using two wattmeter method and verification of the result using one 3-phase wattmeter			
	2 nd	Practical observation, conclusion ,record correction			

10	1 st	Connection of 3-phase energy meter to a 3-phase load			
	2 nd	Practical observation, conclusion ,record correction			
11	1 st	Study of an O.C.B			
	2 nd	Practical observation, conclusion ,record correction			
12	1 st	Study of induction type over current / reverse power relay			
	2 nd	Practical observation, conclusion ,record correction			
13	1 st	Study of Buchholz's relay			
	2 nd	Practical observation, conclusion ,record correction			
14 1 st		Study of an earth fault relay			
	2 nd	Practical observation, conclusion ,record correction			
15	1 st	End-sessional evaluation			
	2 nd	Doubt Clearance			

Discipline- Electrical Engg.	Semester-5 th	Name of the teaching facualty- Sidharth Sankar Sahu			
Subject-	No of				
Power Electronics & PLC	days/week	No of weeks-15			
Lab	class allotted-1	From 14/7/25			
Week	Class day	Practical topic			
1	1 st	Study of switching characteristics of a power transistor			
2	1 st	Study of V-I characteristics of SCR & TRIAC			
3	1 st	Study of V-I characteristics of DIAC.			
4	1 st	Study of drive circuit for SCR & TRIAC using DIAC.			
		Study of voltage source Inverter			
5	1 st	To study phase controlled bridge rectifier using resistive load			
6	1 st	Study of drive circuit for SCR & TRIAC using UJT.			
7	1 st	To study phase controlled bridge rectifier using resistive load.			
8	1 st	To study series Inverter &			
		Study of voltage source Inverter			
9 1 st		To perform the speed control of DC motor using Chopper			
		To study single-phase Cyclo-converter			
10	1 st	Introduction/Familiarization PLC Trainer & its Installation with PC			
		Learn the basics and hardware components of PLC Understand configuration of PLC system			
11	1 st	Study various building blocks of PLC Determine the No. of digital I/O & Analog I/O			
12	1 st	Execute the different Ladder Diagrams			
		Demonstrate PLC and Ladder diagram-Preparation downloading and running Execute Ladder diagrams for			
		different Logical Gates			
13	1 st	Execute Ladder diagrams using timers & counters & Execute the Ladder Diagrams with model applications			
		(i) DOL starter (ii)Star- Delta starter			
14	1 st	Execute Ladder diagrams with model applications (i) Stair case lighting (ii)			
		Traffic light controller			
15	1 st	Practical observation, conclusion, record correction, End-sessional evaluation Practical observation, conclusion,			
		record correction			

Discipline- Electrical Engg.	Semester-5 th	Name of the teaching faculty- Sidharth Sankar Sahu				
Subject- Power electronics &	No of days/week	Semester from- 14/7/2025				
PLČ	class allotted-4	No of weeks-15				
Week	Class day	Theory topic				
1	1 st	Construction, Operation, V-I characteristics & application of power diode, SCR, DIAC, TRIAC,				
		Power MOSFET, GTO &IGBT.				
	2 nd	Two transistor analogy of SCR, Gate characteristics of SCR				
	3 rd	Switching characteristic of SCR during turn on and turn off, Turn on methods of SCR				
	4 th	Numerical related to gate turn on and off of MOSFET, BJT				
2	1 st	Different Commutation techniques (Load commutation, voltage commutation and current commutation)				
	2 nd	SCR protection (Gate Protection)				
	3 rd	Voltage protection and current protection				
	4 th	Firing Circuits (General layout diagram of firing circuit)				
3	1 st	R firing circuits, R-C firing circuit				
	2 nd	UJT pulse trigger circuit and Synchronous triggering (Ramp Triggering)				
	3 rd	Limitations of R and RC firing circuits				
	4 th	Design of Snubber Circuits and numerical to find the value of R and C.				
4	1 st	Doubt clearing and revision class				
	2 nd	Controlled rectifiers Techniques(Phase Angle, Extinction Angle control), Single quadrant semi				
		converter, two quadrant full converter and dual Converter				
	3 rd	Working of single-phase half wave controlled converter with Resistive and R-L loads				
	4 th	Problem solving and realising the wave forms.				
5	1 st	Understand need of freewheeling diode.				
	2 nd	Working of single phase fully controlled converter with resistive and R- L loads.				
	3 rd	Working of three-phase half wave controlled converter with Resistive load				
	4 th	Working of three phase fully controlled converter with resistive load.				
6	1 st	Doubt clearing and problem solving				
	2 nd	Working of single phase AC regulator.				
	3 rd	Working principle of step up & step down chopper				
	4 th	Control modes of chopper				
7	1 st	Operation of chopper in all four quadrants				
	2 nd	UNDERSTAND THE INVERTERS AND CYCLO-CONVERTERS, Classify inverters.				
	3 rd	Explain the working of series inverter				

	4^{th}	Explain the working of parallel inverter			
8	1 st	Explain the working of single-phase bridge inverter.			
	2 nd	Explain the basic principle of cyclo converter			
	3 rd	Explain the working of single-phase step up & step down Cyclo-converter			
	4 th	Applications of Cyclo-converter			
9	1 st	Problem solving on inverter and chopper			
	2 nd	UNDERSTAND APPLICATIONS OF POWER ELECTRONIC CIRCUITS, List applications of power electronic circuits			
	3 rd	List the factors affecting the speed of DC Motors			
	4 th	Speed control for DC Shunt motor using converter			
10	1 st	Speed control for DC Shunt motor using chopper			
	2 nd	List the factors affecting speed of the AC Motors			
	3 rd	Speed control of Induction Motor by using AC voltage regulator			
	4 th	Speed control of induction motor by using converters and inverters (V/F control)			
11	1 st	Working of UPS with block diagram			
	2 nd	Battery charger circuit using SCR with the help of a diagram			
	3 rd	Basic Switched mode power supply (SMPS) - explain its working & applications			
	$4^{ m th}$	Numerical on cyclo-converter			
12	1 st	PLC AND ITS APPLICATIONS, Introduction of Programmable Logic Controller(PLC)			
	2 nd	Advantages of PLC			
	3 rd	Different parts of PLC by drawing the Block diagram and purpose of each part of PLC.			
	4 th	Applications of PLC			
13	1 st	Different Ladder diagrams			
	2 nd	Description of contacts and coils in the following states i)Normally open ii) Normally closed iii) Energized output iv)latched Output v) branching			
	3 rd	Ladder diagrams for i) AND gate ii) OR gate and iii) NOT gate			
	4 th	Ladder diagrams for combination circuits using NAND, NOR, AND, OR and NOT			
14	1 st	Timers-i)T ON ii) T OFF and iii)Retentive timer			
	2 nd	Counters-CTU, CTD			
	3^{rd}	Ladder diagrams using Timers and counters			
	4 th	PLC Instruction set			
15	1 st	Ladder diagrams for following (i) DOL starter and STAR-DELTA starter (ii) Stair case lighting (iii)			

	Traffic light Control (iv) Temperature Controller
2 nd	Special control systems- Basics DCS & SCADA systems
3 rd	Computer Control–Data Acquisition, Direct Digital Control System (Basics only)
4 th	Doubt Clearance