CHEMICAL ENGINEERING LESSON PLAN FOR 3RD SEM (2025-26) | Subject: | | Name of the Teaching Faculty: | |--------------------------|-----------------|---| | Introduction to Chemical | | Satya Sankar Raj | | Engineering | | | | Subject Code | :TH1 | Commencement of Class:14 th July 2025 | | (CHEPC201) | | Closing of Attendance: 15 th November 2025 | | Week | Class Day | Theory/Practical Topics | | | 1 st | Definition of Chemical Engineering and Chemical Industry | | 1st | 2 nd | Role of Physical Sciences, Life Sciences, Mathematics and Economics in Chemical Engineering | | | 3 rd | Duties and Responsibilities of a Chemical Engineer | | | 1 st | Difference between Chemical Engineering and Chemistry | | 2 nd | 2 nd | Introduction to Unit Operations: Definition and Examples | | _ | 3 rd | Introduction to Unit Processes: Definition and Examples | | | 1 st | Batch and Continuous Processes | | 3 rd | 2 nd | Block Diagram and Flowsheet: Concepts and Examples | | | 3 rd | Introduction to PFD and P&ID | | | 1 st | Role of Process Control Engineering in Plants | | 4 th | 2 nd | Control Systems: DCS, PLC, SCADA | | - | 3 rd | Model, Prototype and Pilot Plant: Concepts and Use Cases | | | 1 st | Engineering, Procurement and Construction (EPC) Contracts | | 5 th | 2 nd | Case Studies of EPC Projects | | | 3 rd | Revision and Practice Exercises | | | 1 st | Interdisciplinary Nature of Chemical Engineering | | 6 th | 2 nd | Chemical Engineers in Food and Pharmaceutical Industries | | | 3 rd | Chemical Engineers in Energy and Environmental Sectors | | | 1 st | Chemical Engineers in Biochemical and Electronics Sectors | | 7^{th} | 2 nd | Importance of Quality Check in Chemical Industry | | | 3 rd | Quality Control Methods and Applications | | | 1 st | Simulation and Modeling: Definition and Importance | | 8 th | 2 nd | Applications of Simulation and Modeling in Industry | | - | 3 rd | Software: ASPEN, HYSYS, CHEMCAD, etc. | | | 1 st | Software: ANSYS, PRO/II, DWSIM | | 9 th | 2 nd | Introduction to IoT in Chemical Engineering | | | 3 rd | Applications of Al in Chemical Engineering | | | 1 st | Traditional vs Modern Chemical Engineering | | 10 th | 2 nd | Opportunities for a Chemical Engineer | | | 3 rd | Scope and Future of Chemical Engineering | | | 1 st | Greatest Achievements in Chemical Engineering | | 11 th | 2 nd | Major Contributors and Innovators in the Field | | | 3 rd | Landmark Developments and Case Studies | | | 1 st | Professional Bodies: AIChE, ACS, IIChE | | 12 th | 2 nd | Roles and Contributions of Professional Bodies | | | _ | | | | 3 rd | Membership and Benefits of Joining These Bodies | |------------------|-----------------|--| | | 1 st | Overview of Chemical Engineering Industries in India | | 13 th | 2 nd | Key Companies and Operations in Indian Industry | | | 3 rd | Product Segments and Markets | | | 1 st | Chemical Engineering Industries in Odisha | | 14 th | 2 nd | Raw Materials, Products and End Uses | | | 3 rd | Case Studies from Odisha Industry | | | 1 st | Summary of Course and Open Discussion | | 15 th | 2 nd | Future Trends in Chemical Engineering | | | 3 rd | Class Test / Assessment | | Subject: | | Name of the Teaching Faculty: | |--------------------------|-----------------|---| | Industrial Ch | emistry | Siddhibinayak Pradhan | | Subject Code: TH2 | | Commencement of Class:14th July 2025 | | (CHEPC203) | | Closing of Attendance: 15 th November 2025 | | Week | Class Day | Theory/Practical Topics | | | 1 st | Introduction to Organic Chemistry and Nomenclature | | 1st | 2 nd | Functional Groups and Classification of Organic Compounds | | | 3 rd | Aliphatic vs Aromatic Compounds, Open vs Closed Chain | | | 1 st | Alkanes - Structure and Properties | | 2 nd | 2 nd | Alkenes - Structure and Properties | | | 3 rd | Alkynes - Structure and Properties | | | 1 st | Cycloalkanes - Structure and Properties | | 3^{rd} | 2 nd | Methane and Ethane: Preparation & Reactions | | | 3 rd | Industrial Applications of Methane and Ethane | | | 1 st | Ethylene: Preparation and Reactions | | 4 th | 2 nd | Methanol & Ethanol: Preparation and Properties | | | 3 rd | Industrial Applications of Alcohols | | | 1 st | Acetic Acid: Properties and Applications | | 5 th | 2 nd | Formaldehyde and Acetone | | | 3 rd | Revision and Problem Solving on Aliphatic Compounds | | | 1 st | Introduction to Aromatic Compounds and Aromaticity | | 6 th | 2 nd | Structure of Benzene | | | 3 rd | Properties and Reactions of Benzene | | | 1 st | Halogenation and Hydrogenation of Benzene | | 7 th | 2 nd | Pyrolysis and Substitution Reactions | | | 3 rd | Classification of Alkyl Halides | | 8 th | 1 st | Isomerism in Alkyl Halides | | | 2 nd | Properties and Reactions of Alkyl Halides | | | 3 rd | Elimination Reactions | | | 1 st | Alcohols: Classification and Preparation | | 9 th | 2 nd | Properties and Reactions of Alcohols | | | 3 rd | Phenols: Structure and Classification | | | 1 st | Preparation of Phenols | |------------------|------------------------|--| | 10 th | 2 nd | Properties and Reactions of Phenols | | | 3 rd | Revision and Quiz on Aromatic Compounds | | | 1 st | Introduction to Colloids: Types and Properties | | 11 th | 2 nd | Methods of Preparation and Purification | | | 3 rd | Applications of Colloids | | | 1 st | Emulsion: Types and Properties | | 12 th | 2 nd | Role of Emulsifier and Preparation | | | 3 rd | Applications of Emulsions | | | 1 st | Gel: Types and Properties | | 13 th | 2 nd | Applications of Gel | | | 3 rd | Introduction to Polymers | | | 1 st | Addition and Condensation Polymerization | | 14 th | 2 nd | Methods of Polymerization | | | 3 rd | Thermoplastic and Thermosetting Polymers | | | 1 st | Properties and Applications of Common Polymers | | 15 th | 2 nd | Revision and Summary | | | 3 rd | Class Test / Assessment | | Subject: | | Name of the Teaching Faculty: | |-------------------------|-----------------|---| | Chemical Process | | Yayati Kishore Mohanta | | Calculations | | | | Subject Code: | TH3 | Commencement of Class:14 th July 2025 | | (CHEPC205) | | Closing of Attendance: 15 th November 2025 | | Week | Class Day | Theory/Practical Topics | | | 1 st | Introduction to Process Calculations | | 1st | 2 nd | Dimensions and Systems of Units | | | 3 rd | Fundamental and Derived Quantities | | | 1 st | Unit Conversions in MKS and SI Systems | | 2 nd | 2 nd | Numerical Problems on Unit Conversion | | | 3 rd | Importance of Basis of Calculation | | | 1 st | Concept of Mole, Atom, Atomic Weight, Molecular Weight | | 3 rd | 2 nd | Composition of Solid, Liquid and Gas: Mass, Mole, Volume | | | 3 rd | Percentage, Ratio and Fraction Representation | | | 1 st | Molarity, Molality, Normality: Definitions | | 4 th | 2 nd | Simple Numerical Problems on Composition | | | 3 rd | Concept of Partial Pressure and Vapour Pressure | | | 1 st | Boyle's Law, Charles's Law, Avogadro's Law | | 5 th | 2 nd | Gay-Lussac's Law, Amagat's Law, Dalton's Law | | | 3 rd | Ideal Gas Law and its Application | | | 1 st | Numerical Problems on Gas Laws | | 6 th | 2 nd | Difference between Ideal and Real Solutions | | | 3 rd | Raoult's Law and Henry's Law | | | 1 st | Numerical Problems on Raoult's and Henry's Law | |------------------|------------------------|---| | 7^{th} | 2 nd | Introduction to Material Balance and Conservation of Mass | | | 3 rd | Material Balance Equation and Block Diagrams | | | 1 st | Material Balance on Distillation | | 8 th | 2 nd | Material Balance on Evaporation | | | 3 rd | Material Balance on Drying | | | 1 st | Material Balance on Mixing | | 9 th | 2 nd | Numerical Problems on Material Balance | | | 3 rd | Concept of Excess and Limiting Reactants | | | 1 st | Conversion, Yield, and Selectivity: Definitions | | 10 th | 2 nd | Numerical Problems on Conversion and Yield | | | 3 rd | Revision on Material Balance and Stoichiometry | | | 1 st | Introduction to Heat Effects in Reactions | | 11 th | 2 nd | Standard Heat of Reaction and Combustion | | | 3 rd | Standard Heat of Formation | | | 1 st | Hess Law of Constant Heat Summation | | 12 th | 2 nd | Numerical Problems on Heat of Reaction | | | 3 rd | Numerical Problems on Heat of Combustion | | | 1 st | Numerical Problems on Heat of Formation | | 13 th | 2 nd | Combined Numerical Problems | | | 3 rd | Practice Problems and Concept Reinforcement | | | 1 st | Recap of Unit Systems and Stoichiometry | | 14 th | 2 nd | Recap of Gas Laws and Material Balance | | | 3 rd | Recap of Heat Effects in Chemical Reactions | | | 1 st | Mock Test or Quiz | | 15 th | 2 nd | Doubt Clearing and Concept Revision | | | 3 rd | Final Assessment or Class Test | | Subject: | | Name of the Teaching Faculty: | |-------------------|-----------------|--| | Momentum Transfer | | Siddhibinayak Pradhan | | Subject Code | :TH4 | Commencement of Class:14th July 2025 | | (CHEPC207) | | Closing of Attendance: 15 th November 2025 | | Week | Class Day | Theory/Practical Topics | | | 1 st | Introduction to Fluid Mechanics; Difference between Solids and | | | | Fluids | | 1st | 2 nd | Properties of Fluid: Mass Density, Weight Density, Specific | | 151 | | Volume, Specific Gravity | | | 3 rd | Surface Tension and Viscosity (Dynamic and Kinematic); | | | | Newton's Law of Viscosity | | 2 nd | 1 st | Simple Numerical Problems on Fluid Properties | | | 2 nd | Types of Fluids: Ideal, Real, Newtonian, Non-Newtonian | | | 3 rd | Fluid Pressure and its Measurement: Pascal's Law, Hydrostatic Equilibrium | |-------------------------|-----------------|---| | | 1 st | Manometers: Piezometer, U-Tube, Differential | | 3 rd | 2 nd | Barometer and Concept of Buoyancy | | | 3 rd | Archimedes' Principle and Numerical Problems | | | 1 st | Types of Fluid Flow: Steady, Unsteady, Uniform, Non-Uniform | | 4 th | 2 nd | Compressible vs. Incompressible, Rotational vs. Irrotational | | | 3 rd | Equation of Continuity, Mass Flow Rate, Volumetric Flow Rate | | | 1 st | Simple Numerical Problems on Flow Types and Continuity | | 5 th | 2 nd | Reynolds Experiment and its Significance | | - | 3 rd | Laminar, Transition, and Turbulent Flows, Critical Velocity | | | 1 st | Bernoulli's Theorem and Practical Applications | | 6 th | 2 nd | Derivation of Bernoulli's Equation for Ideal Fluids | | J | 3 rd | Derivation for Real Fluids and Simple Numerical Problems | | | - | Pressure Drop and Frictional Losses in Pipes: Skin and Form | | | 1 st | Friction | | 7 th | 2 nd | Effect of Roughness, Friction Factor, Fanning Equation | | | 3 rd | Hagen-Poiseuille Equation and Simple Numerical Problems | | | 1 st | Flow Measurement: Introduction and Venturimeter Principle | | 8 th | 2 nd | Venturimeter Construction, Working, Co-efficient, Formula | | _ | 3 rd | Numerical Problems on Venturimeter | | | 1 st | Orificemeter: Principle, Construction, Working | | 9 th | 2 nd | Orificemeter Co-efficient, Formula and Numerical Problems | | _ | 3 rd | Pitot Tube: Working Principle and Diagram | | | 1 st | Rotameter: Working Principle and Diagram | | 10 th | 2 nd | Numerical Problems on Flow Rate Measurement | | | 3 rd | Revision and Practice Problems | | | 1 st | Pipe vs Tube, Standard Sizes and Wall Thickness | | 11 th | 2 nd | Schedule Number, Nominal Diameter, BWG Number | | | 3 rd | Types of Joints and Pipe Fittings | | | 1 st | Valves: Gate, Globe, Ball, Needle | | 12 th | 2 nd | Valves: Non-return, Butterfly, Diaphragm, Pressure Relief | | | 3 rd | Applications of Different Valves | | | _ | Classification of Pumps; Centrifugal Pump: Definition and | | | 1 st | Construction | | 13 th | 2 nd | Working, Advantages, Disadvantages of Centrifugal Pump | | | 3 rd | Characteristic Curves, Priming, NPSH, Cavitation | | | 1 st | Losses in Centrifugal Pumps; Reciprocating Pump Applications | | 4 4+h | 2 nd | Piston Pump, Plunger Pump: Construction and Working | | 14 th | _ | Diaphragm Pump and Gear Pump: Construction and | | | 3 rd | Applications | | | 1 st | Fluidisation: Conditions and Types | | 15 th | 2 nd | Applications of Fluidisation | | | 3 rd | Revision, Summary and Class Test | | Subject: | | Name of the Teaching Faculty: | |--------------------------|-----------------|--| | Mechanical Operation | | Satya Sankar Raj | | Subject Code: TH5 | | Commencement of Class:14th July 2025 | | (CHEPC209) | | Closing of Attendance: 15 th November 2025 | | Week | Class Day | Theory/Practical Topics | | | 1 st | Introduction to Size Reduction and its Objectives | | 1st | 2 nd | Size Reduction Methods: Impact, Compression, Attrition, Shear | | | 3 rd | Laws of Comminution: Kick's, Rittinger's and Bond's Law | | | 1 st | Power Consumption in Crushing | | 2 nd | 2 nd | Coarse Crushers: Jaw Crusher - Principle, Construction,
Working | | | 3 rd | Gyratory Crusher and Crushing Roll - Diagram and Applications | | | 1 st | Intermediate Grinders: Hammer Mill - Principle and Working | | 3 rd | 2 nd | Fine Grinders: Ball Mill - Principle and Working | | 3 | 3 rd | Applications of Ultrafine Grinders, Closed and Open Circuit Grinding | | | 1 st | Dry vs Wet Grinding, Free vs Choke Grinding | | 4 th | 2 nd | Numerical Problems on Size Reduction | | 4 | 3 rd | Introduction to Size Separation and Solid Particle | | | 3 | Characterization | | 5 th | 1 st | Sphericity, Sauter Mean Diameter, Mass and Volume Mean Diameter | | 5 | 2 nd | Screening: Definition, Ideal vs Actual Screen, Standard Sizes | | | 3 rd | Factors Affecting Screening, Capacity and Effectiveness | | | 1 st | Screening Equipment: Grizzlies, Trommels | | 6 th | 2 nd | Vibrating and Gyratory Screens - Working and Diagram | | | 3 rd | Classifier: Principle, Diagram, Applications | | | 1 st | Jig and Froth Flotation Cell - Principle and Applications | | 7 th | 2 nd | Electrostatic Precipitator and Magnetic Separator | | | 3 rd | Cyclone Separator and Scrubber - Diagram and Applications | | | 1 st | Clarifier and Thickener - Working and Applications | | 8 th | 2 nd | Introduction to Filtration | | | 3 rd | Constant Rate vs Constant Pressure Filtration | | | 1 st | Numerical and Conceptual Problems on Size Separation | | 9 th | 2 nd | Introduction to Mixing of Solids | | | 3 rd | Difference between Mixing and Agitation | | | 1 st | Agitated Vessel: Design and Function | | 10 th | 2 nd | Types of Agitators: Impeller, Propeller, Paddle, Turbine Blade | | | 3 rd | Concept of Swirling and Vortex, Function of Baffles | | | 1 st | Power Consumption in Stirred Vessels | | 11 th | 2 nd | Numerical Problems on Mixing | | | 3 rd | Introduction to Transportation of Solids | | | 1 st | Belt and Screw Conveyors: Diagram, Working, Application | | 12 th | 2 nd | Bucket Elevator, Scraper Conveyor: Diagram and Applications | | | 3 rd | Pneumatic Conveyor: Principle and Application | | 13 th | 1 st | Introduction to Storage of Solids: Objective | | | 2 nd | Storage Equipment: Hopper, Bin, Silo | |------------------|-----------------|--| | | 3 rd | Concept of Angle of Repose | | | 1 st | Revision on Size Reduction and Size Separation | | 14 th | 2 nd | Revision on Mixing and Transportation | | | 3 rd | Numerical Practice and Discussion | | | 1 st | Mock Test or Quiz | | 15 th | 2 nd | Doubt Clearing and Conceptual Recap | | | 3 rd | Final Assessment / Class Test | | Subject: | | Name of the Teaching Faculty: | |--------------------------|----------------|---| | Industrial Chemistry Lab | | GF | | Subject Cod | le: PR1 | Commencement of Class:14th July 2025 | | (CHEPC211 |) | Closing of Attendance: 15 th November 2025 | | Week | Expt No. | Practical Topic | | 1 st | 1 | Detection of Nitrogen in Organic Compounds | | 2 nd | 1 | Detection of Sulphur in Organic Compounds | | 3 rd | 1 | Detection of Halogen in Organic Compounds | | 4 th | 2 | Determine Carboxylic Functional Group | | 5 th | 2 | Determine Phenolic Functional Group | | 6 th | 2 | Determine Alcoholic Functional Group | | 7 th | 3 | Laboratory Preparation of Oxalic Acid | | 8 th | 3 | Laboratory Preparation of Benzoic Acid | | 9 th | 3 | Laboratory Preparation of Methyl Orange | | 10 th | 4 | Laboratory Preparation of Urea-Formaldehyde Resin | | 11 th | 4 | Laboratory Preparation of Urea-Formaldehyde Resin | | 12 th | 5 | Laboratory Preparation of Bakelite (Phenol-Formaldehyde Resin) | | 13 th | 5 | Laboratory Preparation of Bakelite (Phenol-Formaldehyde Resin) | | 14 th | 6 | Laboratory Preparation of Nylon 6-6 | | 15 th | | Final Lab Assessment / Viva / Record Submission | | Subject: Momentum Transfer Lab Subject Code:PR2 (CHEPC213) | | Name of the Teaching Faculty: Siddhibinayak Pradhan Commencement of Class:14 th July 2025 Closing of Attendance: 15 th November 2025 | |--|---|---| | | | | | 1 st | 1 | Demonstration of Operation of Different Types of Manometers | | 2 nd | 2 | Demonstration of Reynold's Apparatus | | 3 rd | 2 | Demonstration of Reynold's Apparatus | | 4 th | 3 | Verification of Bernoulli's Equation | | 5 th | 3 | Verification of Bernoulli's Equation | | 6 th | 4 | Demonstration of Operation of Venturimeter | | 7 th | 4 | Demonstration of Operation of Venturimeter | | 8 th | 5 | Demonstration of Operation of Orificemeter | | 9 th | 6 | Experiment on Losses in Pipe Flow | | 10 th | 6 | Experiment on Losses in Pipe Flow | | 11 th | 7 | Demonstration of Operation of Centrifugal Pump | | 12 th | 8 | Flow Through Fluidized Bed - Observation and Analysis | | 13 th | 9 | Basic Plumbing Practice: Tools and Jointing | | 14 th | 9 | Basic Plumbing Practice: Tools and Jointing | | 15 th | | Final Lab Assessment / Viva / Record Submission | | Subject: Mechanical Operation Lab | | Name of the Teaching Faculty: Satya Sankar Raj | |-----------------------------------|----------|---| | Subject Code:PR3
(CHEPC215) | | Commencement of Class:14 th July 2025
Closing of Attendance: 15 th November 2025 | | Week | Expt No. | Practical Topic | | 1 st | 1 | Demonstrate the Operation of Blake Jaw Crusher | | 2 nd | 2 | Demonstrate the Operation of Ball Mill and Determine Critical Speed | | 3 rd | 2 | Demonstrate the Operation of Ball Mill and Determine Critical Speed | | 4 th | 2 | Demonstrate the Operation of Ball Mill and Determine Critical Speed | | 5 th | 3 | Demonstrate the Operation of Vibrating Screen | | 6 th | 4 | Demonstrate the Operation of Gyratory Sieve Shaker | | 7 th | 4 | Demonstrate the Operation of Gyratory Sieve Shaker | | 8 th | 5 | Demonstrate the Operation of Froth Floatation Cell | | 9 th | 6 | Demonstrate the Operation of Cyclone Separator | | 10 th | 7 | Demonstrate the Operation of Bucket Elevator | | 11 th | 8 | Demonstrate the Operation of Belt Conveyor | | 12 th | 9 | Demonstrate the Operation of Plate and Frame Filter Press | | 13 th | 10 | Demonstrate the Operation of Paddle Mixer | | 14 th | | Practical beyond syllabus | | 15 th | | Final Assessment / Lab Viva / Record Submission | | Subject: Chemical Engg. Drawing Lab | | Name of the Teaching Faculty: Yayati Kishore Mohanta | |-------------------------------------|----------|--| | Subject Code:PR4 | | Commencement of Class:14 th July 2025 | | (CHEPC217) | | Closing of Attendance: 15 th November 2025 | | Week | Expt No. | Practical Topic | | 1 st | 1 | Pipe Joints and Fittings: Welded, Screw, Union Joints; Socket, Bends, Elbow, Tee | | 2 nd | 1 | Pipe Fittings Continued: Expander, Plug, Welded Neck Flange,
Slip-On Flange | | 3 rd | 2 | Valve Symbols and Schematic Diagram: Gate, Globe, Ball, Diaphragm Valves | | 4 th | 2 | Valve Symbols Continued: Butterfly, Plug, Check, Control Valves | | 5 th | 3 | Process Pipeline Symbols: Pipe, Thermally Insulated, Jacketed, Heated, Flexible Pipes | | 6 th | 4 | Equipment Symbols: Centrifugal Pump, Gear Pump, Compressor, Turbine, Vacuum Pump | | 7 th | 4 | Equipment Symbols Continued: Screw Conveyor, Elevator, Condenser, Boiler, Cyclone Separator | | 8 th | 4 | Equipment Symbols Continued: Filter, Thickener, Crystallizer, Crusher, Dryer | | 9 th | 5 | Vessel Symbols: Vessel, Open/Closed Tank, Column, Tray Column, Clarifier, Bin, Gas Cylinder | | 10 th | 6 | Instrumentation Symbols I: Flow & Level Controllers, Indicators, Meters, Recorders, Transmitters | | 11 th | 6 | Instrumentation Symbols II: Pressure and Temperature Controllers, Indicators, Transducers | | 12 th | 7 | Schematic Diagram of Double Pipe and Shell & Tube Heat Exchangers | | 13 th | 8 | Schematic Diagram of Distillation Column | | 14 th | 9 | Preparation of PFD of a Basic Chemical Engineering Plant | | 15 th | | Final Assessment: Drawing Review, Viva, and Record Submission |