ODD SEM LESSSON PLAN(SEM3, SEM5)

Faculty Name: Deepika Panda Sem: 3rd

Subject: Digital Electronics Academic Year: 2023-24

Duration: 1st Aug 2023 to 30th Nov 2023

	ı				
	No. of				
	Days/per				
WEEKS	we		Syllabus To be Covered		
	Cla		7		
	allot				
			. (5: :: 151		
	Unit - 1 : Basics of Digital Electronics [12 Period]				
1.0-	1st	1	Number System-Binary, Octal, Decimal, Hexadecimal		
1ST	2nd	2	Conversion from one system to another number		
WEEK			system.		
	3rd	3	Arithmetic Operation-Addition, Subtraction,		
			Multiplication, Division		
	4th 4		1's & 2's complement of Binary numbers&		
			Subtraction using complements method		
	1st	5	Digital Code & its application & distinguish between		
			weighted & non- weight Code, Binary codes, excess-3		
2015	2	-	and Gray codes.		
2ND	2nd	6	Logic gates: AND,OR,NOT,NAND,NOR, Exclusive-OR,		
WEEK			Exclusive- NORSymbol, Function, expression, truth		
	3rd	7	table & timing diagram Universal Gates & its Realisation		
	4th	8			
	1st	9	Universal Gates & its Realisation Boolean algebra, Boolean expressions, Demorgan's		
	131	9	Theorems.		
3RD	2nd	10	Represent Logic Expression: SOP & POS forms		
WEEK	3rd	11	Karnaugh map (3 & 4 Variables) & Minimization of logical expressions		
	4th	12	Karnaugh map (3 & 4 Variables) don't care conditions		
	Unit	- 2: C	ombinational Logic Circuits [12 Period]		
4TH	1st	13	Half adder		
WEEK	2nd	14	Full adder		
***	3rd	15	Half Subtractor		
	4th	16	Full Subtractor		
5TH	1st	17	Parallel Binary 4 bit adder.		
WEEK	2nd	18	Serial adder		
	3rd	19	Multiplexer (4:1)		
	4th	20	De- multiplexer (1:4)		
	1st	21	Decoder, Encoder		
6TH	2nd	22	Digital comparator (3 Bit)		
WEEK	3rd	23	Seven segment Decoder		

	4th 24 Seven segment Decoder					
Unit-3: Sequential logic Circuits [12 Period]						
<u> </u>	1st 25 Principle of flip-flops operation, its Types,					
/ I	2nd	26	Principle of flip-flops operation, its Types,			
VV	3rd	27	SR Flip Flop using NAND Latch (un clocked)			
l -	4th	28	SR Flip Flop using NOR Latch (un clocked)			
	1st	29	Clocked SR flip-flops-Symbol, logic Circuit, truth table and applications			
8TH	2nd	30	Clocked D flip-flops-Symbol, logic Circuit, truth table and applications			
WEEK	3rd	31	Clocked JK flip-flops-Symbol, logic Circuit, truth table and applications			
	4th					
			and applications			
	1st 33 Clocked JK Master Slave flip-flops-Symbol, logi Circuit, truth table and applications					
9TH Z	2nd	34	Clocked JK Master Slave flip-flops-Symbol, logic Circuit, truth table and applications			
l -	3rd	35	Concept of Racing and how it can be avoided.			
l -	4th	36	Concept of Racing and how it can be avoided.			
	Unit-4: Registers, Memories & PLD [08 Period]					
	1st 37 Shift Registers-Serial in Serial -out, Serial- in Paralle out					
10711	2nd 38		Shift Registers-Parallel in serial out and Parallel in			
10TH -		33	parallel out			
	3rd	39	Universal shift registers-Applications. Types of Counter & applications			
	4th	40	Binary counter, Asynchronous ripple counter (UP & DOWN)			
	1st	41	Binary counter : Decade counter. Synchronous counter, Ring Counter.			
11TH :	2nd	42	Binary counter : Ring Counter.			
l -	3rd	43	Concept of memories-RAM, ROM, static RAM,			
			dynamic RAM,PS RAM			
	4th	44	Basic concept of PLD & applications			
-	Unit-5: A/D and D/A Converters [07 Period]					
	1st	45	Necessity of A/D and D/A converters.			
12TH	2nd	46	D/A conversion using weighted resistors methods.			
WEEK	3rd	47	D/A conversion using weighted resistors methods.			
	4th	48	D/A conversion using R-2R ladder (Weighted			
			resistors) network.			
	1st	49	D/A conversion using R-2R ladder (Weighted			
			resistors) network.			
	2nd	50	A/D conversion using counter method.			
13TH WEEK	3rd	51	A/D conversion using Successive approximate method			
	Unit-6: LOGIC FAMILIES [09 Period]					

	4th	52	Various logic families & categories according to the IC fabrication process		
14TH WEEK	1st	53	Various logic families & categories according to the IC fabrication process		
	2nd	54	Characteristics of Digital ICs- Propagation Delay, fanout, fan-in with Reference to logic families.		
	3rd	55	Characteristics of Digital ICs- Power Dissipation, Noise		
			Margin with Reference to logic families.		
	4th	Characteristics of Digital ICs- Power Supply requirement with Reference to logic families.			
15TH WEEK	1st	57	Characteristics of Digital ICs- Speed with Reference to logic families.		
	2nd	58	Features, circuit operation & various applications of TTL (NAND)		
	3rd	59	Features, circuit operation & various applications of CMOS (NAND)		
	4th	60	Features, circuit operation & various applications of CMOS (NOR)		

Faculty Name: Deepika Panda Sem: 5th

Subject: VLSI AND EMBEDDED SYSTEMS(Th-3)

Academic Year: 2023-24

Duration: 1st Aug 2023 to 30th Nov 2023

Week	Class Day		Theory Topic
1ST			1. Introduction to VLSI & MOS Transistor
	1 st	1.1	Historical perspective- Introduction
	2 nd	1.2	Classification of CMOS digital circuit types
	3 rd	1.3	Introduction to MOS Transistor& Basic operation of MOSFET.
	4 th	1.4	Structure and operation of MOSFET (n-MOS enhancement type) & CMOS
2ND	1 st	1.5	MOSFET V-I characteristics.
	2 nd	1.6	Working of MOSFET capacitances.
	3 rd	1.7	Modelling of MOS Transistors including Basic concept the SPICE level-1 models, the level-2 and level-3 model.
	4 th	1.8	Flow Circuit design procedures
3RD	1 st	1.9	VLSI Design Flow & Y chart
	2 nd	1.10	Design Hierarchy
	3 rd	1.11	VLSI design styles-FPGA, Gate Array Design, Standard cells based, Full custom
	4 th	1.11	VLSI design styles-FPGA, Gate Array Design, Standard cells based, Full custom
4TH			2. Fabrication of MOSFET
	1 st	2.1	Simplified process sequence for fabrication
	2 nd	2.2	Basic steps in Fabrication processes Flow
	3 rd	2.3	Fabrication process of nMOS Transistor

	_+h		01400
	4 th	2.4	CMOS n-well Fabrication Process Flow
5TH	1 st	2.5	MOS Fabrication process by n-well on p-substrate
	2 nd	2.5	MOS Fabrication process by n-well on p-substrate
	3 rd	2.6	CMOS Fabrication process by P-well on n-substrate
	4 th	2.6	CMOS Fabrication process by P-well on n-substrate
6ТН	1 st	2.7	Layout Design rules
	2 nd	2.8	Stick Diagrams of CMOS inverter
			3. MOS Inverter
	3 rd	3.1	Basic NMOS inverters
	4th	3.2	Working of Resistive-load Inverter
7TH	1 st	3.2	Working of Resistive-load Inverter
	2 nd	3.3	Inverter with n-Type MOSFET Load – Enhancement
			Load, Depletion n-MOS inverter
	3 rd	3.3	Inverter with n-Type MOSFET Load – Enhancement
			Load, Depletion n-MOS inverter
	4 th	3.4	CMOS inverter – circuit operation and characteristics
			and interconnect effects: Delay time definitions
8TH	1 st	3.4	CMOS inverter – circuit operation and characteristics
			and interconnect effects: Delay time definitions
	2 nd	3.5	CMOS Inventor design with delay constraints – Two
			sample mask lay out for p-type substrate
	3 rd	3.5	3.5 CMOS Inventor design with delay constraints –
			Two sample mask lay out for p-type substrate
			4. Static Combinational, Sequential, Dynamics logic
			circuits & Memories
	4th	4.1	Define Static Combinational logic, working of Static
			CMOS logic circuits (Two-input NAND Gate)
9TH	1 st	4.2	CMOS logic circuits (NAND2) Gate
	2 nd	4.3	CMOS Transmission Gates (Pass gate)
	3 rd	4.3	CMOS Transmission Gates (Pass gate)
40=11	4 th	4.4	Complex Logic Circuits - Basics
10TH	1 st	4.5	Classification of Logic circuits based on their temporal
	2 nd	1.6	behaviour SR Flip latch Circuit
	3 rd	4.6	·
	4 th	4.6	SR Flip latch Circuit
44	<u> </u>	4.7	Clocked SR latch only.
11TH	1 st	4.7	Clocked SR latch only.
	2 nd	4.8	CMOS D latch.
	3 rd	4.9	Basic principles of Dynamic Pass Transistor Circuits
	4 th	4.10	Dynamic RAM, SRAM
12TH	1 st	4.10	Dynamic RAM, SRAM
	2 nd	4.11	Flash memory
			5. System Design method & synthesis
	3 rd	5.1	Design Language (SPL & HDL) & HDL & EDA tools &
	at.		VHDL and packages Xilinx
	4 th	5.2	Design strategies & concept of FPGA with standard
407::	_ ct		cell-based design
13TH	1 st	5.3	VHDL for design synthesis using CPLD or FPGA
	2 nd	5.4	Raspberry Pi - Basic idea
			6. Introduction to Embedded Systems
	3 rd	6.1	Embedded Systems Overview, list of embedded
			systems, characteristics, example – A Digital Camera

	4 th	6.1	Embedded Systems Overview, list of embedded
			systems, characteristics, example – A Digital Camera
14TH	1 st	6.2	Embedded Systems TechnologiesTechnology – Definition -Technology for Embedded Systems -Processor Technology
	2 nd	6.2	-IC Technology Embedded Systems TechnologiesTechnology — Definition -Technology for Embedded Systems -Processor Technology -IC Technology
	3 rd	6.3	Design Technology-Processor Technology, General Purpose Processors – Software, Basic Architecture of Single Purpose Processors – Hardware
	4 th	6.3	Design Technology-Processor Technology, General Purpose Processors – Software, Basic Architecture of Single Purpose Processors – Hardware
15TH	1 st	6.4	Application – Specific Processors, Microcontrollers, Digital Signal processors (DSP)
	2 nd	6.5	IC Technology- Full Custom / VLSI, Semi-Custom ASIC (Gate Array & Standard Cell), PLD (Programmable Logic Device)
	3 rd	6.5	IC Technology- Full Custom / VLSI, Semi-Custom ASIC (Gate Array & Standard Cell), PLD (Programmable Logic Device)
	4 th	6.6	Basic idea of Arduino micro controller