| DISCIPLINE:CSE | SEMESTER:6TH | NAME OF THE TEACHING FACULTY: : SMT
REETANJALI PANDA | |------------------------|------------------------|---| | SUBJECT:CNS | NO.OF DAYS/PER WEEK | SEMESTER FROM DATE: 16/01/2024 TO DATE: | | | CLASS ALLOTTED:4 | 1/05/2025 | | | | NO.OF WEEKS:15 | | WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS | | 1 ST | 1 ST | Possible attacks on computers | | | 2 ND | The need for security | | | 3 RD | Security approach | | | 4 TH | Principles of security | | 2 ND | 1 ST | Types of attacks | | | 2 ND | Cryptography concepts | | | 3 RD | Cryptography concepts | | | 4 TH | Plain text | | 3 RD | 1 ST | Cipher Text | | | 2 ND | Substitution techniques | | | 3 RD | Transposition techniques | | | 4 TH | Encryption techniques | | 4 TH | 1 ST | Decryption techniques | | | 2 ND | Symmetric key cryptography | | | 3 RD | Asymmetric key cryptography | | | 4 TH | Symmetric key algorithms | | 5 [™] | 1 ST | Symmetric key algorithm types | | | 2 ND | Symmetric key algorithm types | | | 3 RD | Asymmetric key algorithms | | | 4 [™] | Asymmetric key algorithm types | | 6 [™] | 1 ST | Overview of Symmetric key cryptography | | | 2 ND | Overview of Symmetric key cryptography | | | 3 RD | Data encryption standards | | | 4 [™] | Data encryption standards | | 7 TH | 1 ST | Over view of Asymmetric key cryptography | | | 2 ND | The RSA algorithm | | | 3 RD | The RSA algorithm | | | 4 TH | Symmetric key cryptography | | 8 TH | 1 ST | Asymmetric key cryptography | | | 2 ND | Digital signature | | | 3 RD | Digital certificate | | | 4тн | Digital certificates | | 9 [™] | 1 ST | Public key infrastructure | | | 2 ND | Private key management | | | 3 RD | Private key management | | | 4 TH | PKIX Model | | 10 TH | 1 ST | PKIX Model | | | 2 ND | Public key cryptography standards | | | 3 RD | Public key cryptography standards | | | 4 ™ | Public key cryptography standards | | Basic concept 3RD Secure socket layer 4TH Transport layer security 12TH 1ST Transport layer security 2ND Secure Hyper text transfer protocol(SHTTP) 3RD Secure Hyper text transfer protocol(SHTTP) | | |---|-------| | Transport layer security 12 TH 1sT Transport layer security Transport layer security Secure Hyper text transfer protocol(SHTTP) | | | 12 TH 1 ST Transport layer security 2ND Secure Hyper text transfer protocol(SHTTP) | | | 2ND Secure Hyper text transfer protocol(SHTTP) | | | | | | Secure Hyper text transfer protocol(SHTTP) | | | Secure Tryper text transfer protocon(STTTT) | | | Time stamping protocol (TSP) | | | 13 TH Secure electronic transaction (SET) | | | 2 ND User authentication | | | 3 RD Authentication basics | | | 4 TH Password | | | 14 TH 1 ST Authentication Tokens | | | 2ND Certificate based authentication | | | 3 RD Biometric authentication | | | Network Security & VPN | | | 15 TH 1 ST Brief introduction of TCP/IP | | | 2ND Firewall | | | 3RD IP Security | | | 4 TH Virtual Private Network (VPN) | | | DISCIPLINE:CSE SEMESTER: 6 th NAME OF THE TEACHING FACULTY: SMT | | | NAYANA PATEL | | | | DATE: | | CLASS ALLOTTED:4 1/05/2025 | | | | | | NO.OF WEEKS:15 | | | WEEK CLASS DAY THEORY TOPICS | | | | | | WEEK CLASS DAY THEORY TOPICS | oflo | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories | oflo | | WEEK CLASS DAY THEORY TOPICS 1 ST 1 ST Introduction to Internet of Things. Introduction.Characteristics of IoT . Applications | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT. Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 4TH Actuator | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT. Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 4TH Actuator 2ND 1ST IoT components and implementation | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 4TH Actuator 2ND 1ST IoT components and implementation 2ND Challenges for IoT | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction. Characteristics of IoT. Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 4TH Actuator 2ND 1ST IOT components and implementation 2ND Challenges for IoT 3RD IOT Networking . Terminologies. | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 2ND 4TH 2ND IoT components and implementation 2ND Challenges for IoT 3RD IOT Networking . Terminologies. 4TH Gateway Prefix allotment | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction. Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 4TH Actuator 2ND 1sT IoT components and implementation 2ND Challenges for IoT 3RD IOT Networking . Terminologies. 4TH Gateway Prefix allotment 3RD Impact of mobility on Addressing | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 4TH Actuator 2ND 1sT IoT components and implementation 2ND Challenges for IoT 3RD IOT Networking . Terminologies. 4TH Gateway Prefix allotment 3RD 1sT Impact of mobility on Addressing Multihoming Multihoming | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers Baseline Technologies
Sensor Sensor 4TH Actuator 2ND 1sT IoT components and implementation 2ND Challenges for IoT 3RD IOT Networking . Terminologies. 4TH Gateway Prefix allotment 3RD 1sT Impact of mobility on Addressing Multihoming Nultihoming 3RD Deviation from regular Web 2.6 | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 4TH Actuator 2ND 1sT IoT components and implementation 2ND Challenges for IoT 3RD IOT Networking . Terminologies. 4TH Gateway Prefix allotment 3RD 1sT Impact of mobility on Addressing 4ND Multihoming 2ND Multihoming 3RD Deviation from regular Web 2.6 4TH IoT identification and Data protocols | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers Baseline Technologies
Sensor Sensor 4TH Actuator 2ND 1sT IoT components and implementation 2ND Challenges for IoT 3RD IOT Networking . Terminologies. 4TH Gateway Prefix allotment 3RD Impact of mobility on Addressing Multihoming Multihoming 3RD Deviation from regular Web 2.6 | of Io | | WEEK CLASS DAY THEORY TOPICS 15T Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers Baseline Technologies
Sensor 4TH Actuator 2ND 15T IoT components and implementation 2ND Challenges for IoT 3RD IOT Networking . Terminologies. 4TH Gateway Prefix allotment 3RD Impact of mobility on Addressing Multihoming Multihoming 3RD Deviation from regular Web 2.6 4TH IoT identification and Data protocols | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction. Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 4TH Actuator 2ND 1ST IoT components and implementation Challenges for IoT 3RD IOT Networking . Terminologies. 4TH Gateway Prefix allotment 3RD Impact of mobility on Addressing ATH Impact of mobility on regular Web 2.6 4TH IoT identification and Data protocols 4TH Ist Connectivity Technologies . Introduction. | of Io | | WEEK CLASS DAY THEORY TOPICS 1ST Introduction to Internet of Things.
Introduction.Characteristics of IoT . Applications 2ND IoT Categories
IoT Enablers and connectivity layers 3RD Baseline Technologies
Sensor 4TH Actuator 2ND 1sT 2ND Challenges for IoT 1OT Networking . Terminologies. 4TH Gateway Prefix allotment 3RD 1sT 2ND Multihoming 2ND Multihoming 3RD Deviation from regular Web 2.6 4TH IoT identification and Data protocols 4TH 1sT Connectivity Technologies . Introduction. 4TH 1sT Connectivity Technologies . Introduction. | of Io | | | 2 ND | NFC, Bluetooth, Z wave, ISA100.11.A | |------------------------|------------------------|--| | | 3 RD | Introduction. Components of a sensor node . Modes of Detection | | | 4 ^{ТН} | Challenges in WSN .Sensor Web .Cooperation and Behaviour of Nodes in WSN | | 6 тн | 1 ST | Self Management of WSN .Social sensing WSN | | | 2 ND | Application of WSN . Wireless Multimedia sensor network | | | 3 RD | Wireless Nanosensor Networks. Underwater acoustic sensor networks. | | | 4 TH | WSN Coverage .Stationary WSN, Mobile WSN. | | 7 TH | 1 ST | M2M communication | | | 2 ND | M2M communication | | | 3 RD | M2M Ecosystem | | | 4 ™ | M2M Ecosystem | | 8 TH | 1 ST | M2M service Platform | | 0 | 2ND | Interoperability | | | 3 RD | Programming with Arduino .Features of Arduino | | | 4™ | Components of Arduino Board. | | 9™ | 1 ST | Arduino IDE | | <u> </u> | 2 ND | Case Studies | | | 3 RD | Case Studies | | | 4 TH | Programming with Raspberry Pi | | 10 TH | 1 ST | Architecture and Pin Configuration | | 10 | 2ND | Case studies | | | 3 RD | Implementation of IoT with Raspberry Pi | | | 4 TH | Implementation of IoT with Raspberry Pi | | 4471 | - | Software defined Networking .Limitation of current | | 11 [™] | 1 ST | network | | | 2 ND | Origin of SDN . SDN Architecture | | | 3 RD | Rule Placement, Open flow Protocol | | | 4 [™] | Controller placement | | 12 [™] | 1 ST | Security in SDN | | | 2 ND | Integrating SDN in IoT | | | 3 RD | Smart Homes. Origin and example of Smart Home | | | | Technologies | | | 4 TH | Smart Home Implementation | | 13 ™ | 1 ST | Home Area Networks(HAN) | | | 2 ND | Home Area Networks(HAN) | | | 3 RD | Smart Home benefits and issues | | | 4 TH | Smart Cities. Characteristics of Smart Cities . Smart city | | | | Frameworks | | 14 [™] | 1 ST | Challenges in Smart cities | | • | 2 ND | Data Fusion | | | 3 RD | Smart Parking | | | 4 [™] | Energy Management in Smart cities | | 2ND
3RD
4TH | Design considerations Applications of IIoT . Benefits of IIoT . | |---|---| | | Applications of IIoT . Benefits of IIoT . | | A TH | | | | Challenges of IIoT | | DISCIPLINE:CSE SEMESTER:6 th | NAME OF THE TEACHING FACULTY: SMT SUMITRA | | | MAHAPATRA | | SUBJECT:CC NO.OF DAYS/PER WEEK | SEMESTER FROM DATE: 16/01/2024 TO DATE: | | | 1/05/2025 | | CLASS ALLOTTED:4 | NO.OF WEEKS:15 | | WEEK CLASS DAY | THEORY/PRACTICAL TOPICS | | WEEK CEASS DAT | THEORY HACHERE TO THE | | 1 st 1 st | 1.1. Historical development | | | 1.2. Vision of Cloud Computing | | 2 nd | 1.3. Characteristics of Cloud computing | | | 1.4. Cloud computing Reference model | | 3 rd | 1.5. Cloud computing environment | | | 1.6. Cloud Service requirements | | 4 th | 1.7. Cloud and Dynamic Infrastructure | | | 1.8. Cloud Adoption | | 2 nd 1 st | 1.9. Cloud applications | | 2 nd | 2.1. Introduction | | | 2.2. Cloud Reference Model | | 3 rd | 2.1. Introduction | | | 2.2. Cloud Reference Model | | 4 th | 2.3. Types of Clouds | | 3 rd 1 st | 2.3. Types of Clouds | | 2 nd | 2.4. Cloud Interoperability and standards | | 3rd | 2.4. Cloud Interoperability and standards | | 4 th | 2.5. Cloud computing Interoperability use cases | | 4 th 1 st | 2.6. Role of standards in Cloud Computingenvironment | | 2 nd | | | | 3.1. Introduction | | | 3.2. Scalability and Fault Tolerance | | 3rd | 3.1. Introduction | | | 3.2. Scalability and Fault Tolerance | | | 4 th | 3.3. Cloud solutions | |------------------------|------------------------|---| | | | 3.4. Cloud Ecosystem | | | | | | 5 th | 1 st | 3.5. Cloud Business process management | | | | 3.6. Portability and Interoperability | | | | | | | 2 nd | 3.7. Cloud Service management | | | | 3.8. Cloud Offerings | | | | | | | 3 rd | 3.9. Testing under Control | | | | 3.10. Cloud service Controls | | | | | | | 4 th | 3.11. Virtual desktop Infrastructure | | | | | | 6 ^h | 1 st | 3.11. Virtual desktop Infrastructure | | | 2 nd | 4.1. Create a virtualised Architecture | | | 2 | 4.2. Data Centre | | | 3 rd | 4.3. Resilience | | | | 4.4. Agility | | | 4 th | 4.5. Cisco Data Centre Network architecture | | | • | | | 7 th | 1 st | 4.6. Storage | | | | 4.7. Provisioning | | | 2 nd | 4.8. Asset Management | | | | 4.9. Concept of Map Reduce | | | 3 rd | 4.9. Concept of Map Reduce | | | 4 th | 4.10. Cloud Goverance | | | 44. | 4.11. Load Balancing | | 8 th | 1 st | 4.12. High Availability | | O . | 1 | 4.13. Disaster Recovery | | | | | | | 2 nd | 5.1. Virtualisation | | | | 5.2. Betwork Virtualisation | | | 3 rd | 5.3. Desktop and Application Virtualisation | | | 4 th | 5.4. Desktop as a service | | | 4" | 2 2 sattop as a service | | 9th | 1 st | 5.5. Local desktop Virtualisation | | | | 5.6. Virtualisation benefits | | | 2 nd | 5.7. Server Virtualisation | | | | | | | 3 rd | 5.8. Block and File level Storage Virtualisation | |------------------|------------------------|--| | | 4 th | 5.9. Virtual Machine Monitor | | | 7 | 5.10. Infrastructure Requirements | | 10 th | 1 st | 5.11. VLAN and VSAN | | | 2 nd | 6.1. Cloud Security Fundamentals | | | 3 rd | 6.2. Cloud security services | | | 4 th | 6.2. Cloud security services | | 11 th | 1 st | 6.3. Design Principles | | | 2 nd | 6.3. Design Principles | | | 3 rd | 6.4. Secure Cloud software requirements | | | 4 th | 6.5. Policy Implementation | | 12 th | 1 st | 6.6. Cloud Computing Security Challenges | | | 2 nd | 7.1. Architectural Considerations | | | _ | 7.2. Information Classification | | | 3 rd | 7.3. Virtual Private Networks | | | | 7.4. Public Key and Encryption Key management | | | 4 th | 7.5. Digital certificates | | | | 7.6. Key management | | | | 7.7. Memory Cards | | 13 th | 1 st | 7.6. Key management | | | _ | 7.7. Memory Cards | | | 2 nd | 7.8. Implementing Identity Management | | | _ | 7.9. Controls and Autonomic System | | | 3 rd | 8.1. Cloud Information security vendors | | | 4 th | 8.2. Cloud Federation, charactrization | | 14 th | 1 st | 8.3. Cloud Federation stack | | | 2 nd | 8.4. Third Party Cloud service | | | 3 rd | 8.5. Case study | | | 4 th | 9.1. Introduction | | 15 th | 1 st | 9.2. Data Source | | | 2 nd | 9.2. Data Source | |------------------------|--------------------------------------|--| | | 3 rd | 9.3. Data storage and Analysis | | | 4 th | 9.4. Comparison with other system | | DISCIPLINE:CSE | SEMESTER: 6 th | NAME OF THE TEACHING FACULTY: Sujata kumari
Acharya | | SUBJECT:E-Commerce | NO.OF DAYS/PER WEEK CLASS ALLOTTED:4 | SEMESTER FROM DATE: 16/01/2024 TO DATE: 1/05/2025 NO.OF WEEKS:15 | | WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS | | 1 ST | 1 ST | Introduction, What is E-commerce | | | 2 ND | Introduction, What is E-commerce | | | 3 RD | E-Business | | | 4 [™] | Categories of E-Commerce Applications | | 2 ND | 1 ST | Global Trading Environment & Adoption of E-
commerce | | | 2 ND | Comparison between traditional and E-commerce | | | 3 RD | Comparison between traditional and E-commerce | | | 4 [™] | Advantage and Disadvantage | | 3 RD | 1 ST | Introduction of Business Models of E-Commerce | | | 2 ND | Business Models of E-Commerce | | | 3 RD | B2C | | | 4 TH | B2B | | 4 TH | 1 ST | Difference between B2C and B2B | | | 2 ND | C2C | | | 3 RD | Introduction of Need for B2B | | | 4 [™] | Need for B2B | | 5™ | 1 ST | EDI | | | 2 ND | Paperless Transaction | | | 3 RD | EDI standards | | | 4 ™ | Data Standards used in EDI | | 6 [™] | 1 ST | Cost of EDI, Reasons for Slow acceptability | | | 2 ND | Electronic Fund Transfer (Canada case eliminated) | | | 3 RD | XML and its application , Comparison of HTML and XML | | | 4 TH | Advantage of XML as a Technology | | 7 TH | 1 ST | Introduction of Business Applications of E-Commerce, Trade Cycle | | | 2 ND | Supply Chain | | | 3 RD | E-Procurement | | | 4 TH | Implementing E-Procurement | |------------------------|---------------------------|---| | 8 TH | 1 ST | Competitive Advantage | | | 2 ND | E-Commerce Application in Manufacturing | | | 3 RD | E-Commerce Application in Wholesale | | | 4 [™] | E-Commerce Application in Retail, E- | | | | Commerce Application in Service Sector | | 9™ | 1 ST | Introduction of E-Commerce in Technology, | | | | IT infrastructure, Contents | | | 2 ND | Internet, Intranet | | | 3 RD | Middleware | | | 4 TH | Extranet, VPN | | 10 TH | 1 ST | Firewall, Cryptography | | | 2 ND | Digital Signature | | | 3 RD | Digital Envelope, Digital certificates | | | 4 TH | Introduction of Electronic Payment System, | | | | Electronic Payment Mechanism | | 11 [™] | 1 ST | Types of Payment System | | | 2 ND | Risks Associated with Electronic Payment | | | 3 RD | Risk Management option, Payment Gateway | | | 4 TH | Issues of Electronic Payment Technology | | 12 [™] | 1 ST | Recommendations | | | 2 ND | Security Requirement | | | 3 RD | Secure Socket Layer, Biometrics | | | 4 TH | Internet Banking | | 13™ | 1 ST | Introduction of Security Issues in E-Commerce | | | 2 ND | E-commerce security issues | | | 3 RD | Risks involved in e-commerce | | | 3
4™ | Protecting e-commerce system | | 14 [™] | 1 ST | Common E-commerce Security Tools | | 14 | 2 ND | Client server Network security | | | 3 RD | Data and Message Security | | | 4 ™ | Current Trends in Electronic World | | 15™ | 1ST | E-waste | | <u>13</u> | 2 ND | E-Surveillance | | | 3 RD | E-governance | | | 4 [™] | E-care | | DISCIPLINE:CSE | SEMESTER: 6 th | NAME OF THE TEACHING FACULTY: SMT | | | | REETANJALI PANDA & Sujata kumari Acharya | | SUBJECT:NS LAB | NO.OF DAYS/PER WEEK | SEMESTER FROM DATE: 16/01/2024 TO DATE: | | | CLASS ALLOTTED:4 | 1/05/2025
NO.OF WEEKS:15 | | WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS | |-----------------|------------------------|---| | 1 st | 1 st | Installation and comparison of various anti virus software | | | 2 nd | 1. Installation and comparison of various anti virus software | | | 3 rd | 1. Installation and comparison of various antivirus software | | | 4 th | 1. Installation and comparison of various anti virus software | | 2 nd | 1st | 1. Installation and comparison of various anti virus software | | | 2 nd | 1. Installation and comparison of various anti virus software | | | 3 rd | 1. Installation and comparison of various anti virus software | | | 4 th | Installation and comparison of various anti virus software | | 3 rd | 1 st | 2. Installation and study of various parameters of firewall. | | | 2 nd | 2. Installation and study of various parameters of firewall. | | | 3 rd | 2. Installation and study of various parameters of firewall. | | | 4 th | 2. Installation and study of various parameters of firewall. | | 4 th | 1 st | 2. Installation and study of various parameters of firewall. | | | 2 nd | 2. Installation and study of various parameters of firewall. | | | 3 rd | 2. Installation and study of various parameters of firewall. | | | 4 th | 2. Installation and study of various parametersof firewall. | | 5 th | 1 st | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 2 nd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 3 rd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 4 th | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | 6 ^h | 1 st | 3. Writing program in C to Encrypt/Decrypt using XOR key. | |------------------|------------------------|---| | | 2 nd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 3 rd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 4 th | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | 7 th | 1 st | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 2 nd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 3 rd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 4 th | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | 8 th | 1 st | 4. Study of VPN. | | | 2 nd | 4. Study of VPN. | | | 3 rd | 4. Study of VPN. | | | 4 th | 4. Study of VPN. | | 9 th | 1 st | 4. Study of VPN. | | | 2 nd | 4. Study of VPN. | | | 3 rd | 4. Study of VPN. | | | 4 th | 4. Study of VPN. | | 10 th | 1 st | 4. Study of VPN. | | | 2 nd | 5. Study of various hacking tools. | | | 3 rd | 5. Study of various hacking tools. | | | 4 th | 5. Study of various hacking tools. | | 11 th | 1 st | 5. Study of various hacking tools. | | | 2 nd | 5. Study of various hacking tools. | | | 3 rd | 5. Study of various hacking tools. | | | 4 th | 5. Study of various hacking tools. | | 12 th | 1 st | 5. Study of various hacking tools. | |------------------|---------------------|--| | | 2 nd | 5. Study of various hacking tools. | | | 3 rd | 5. Study of various hacking tools. | | | 4 th | 5. Study of various hacking tools. | | 13 th | 1 st | 5. Study of various hacking tools. | | | 2 nd | 5. Study of various hacking tools. | | | 3 rd | 6. Practical applications of digital signature | | | 4 th | 6. Practical applications of digital signature | | 14 th | 1 st | 6. Practical applications of digital signature | | | 2 nd | 6. Practical applications of digital signature | | | 3 rd | 6. Practical applications of digital signature | | | 4 th | 6. Practical applications of digital signature | | 15 th | 1 st | 6. Practical applications of digital signature | | | 2 nd | 6. Practical applications of digital signature | | | 3 rd | 6. Practical applications of digital signature | | | 4 th | 6. Practical applications of digital signature | | DISCIPLINE:CSE | SEMESTER:6TH | NAME OF THE TEACHING FACULTY: SMT SUMITRA MAHAPATRA & NAYANA PATEL | | SUBJECT:IOT LAB | NO.OF DAYS/PER WEEK | SEMESTER FROM DATE: 16/01/2024 TO DATE: | | | CLASS ALLOTTED:4 | 1/05/2025
NO.OF WEEKS:15 | | | | | | WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS | | 1 st | 1 st | Basics of C language using Arduino IDE Understating basics of Arduino IDE | | | 2 nd | Basics of C language using Arduino IDE
Understating basics of Arduino IDE | | | 3 rd | Variables, datatype, loops, control statement, function | | | 4 th | • Variables, datatype, loops, control statement, function | |-----------------|------------------------|---| | 2 nd | 1 st | • Variables, datatype, loops, control statement, function | | | 2 nd | Variables, datatype, loops, control statement, function | | | 3 rd | Variables, datatype, loops, control statement, function | | | 4 th | Variables, datatype, loops, control statement, function | | 3 rd | 1 st | Variables, datatype, loops, control statement, function | | | 2 nd | Variables, datatype, loops, control statement, function | | | 3 rd | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | | 4 th | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | 4 th | 1 st | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | | 2 nd | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | | 3 rd | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | | 4 th | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | 5 th | 1 st | • Interfacing Button and LED – LED blinking when button is pressed | | | 2 nd | • Interfacing Button and LED – LED blinking when button is pressed | | | 3 rd | • Interfacing Button and LED – LED blinking when button is pressed | | | 4 th | Interfacing Button and LED – LED blinking
when button is pressed | | 6 ^h | 1 st | Interfacing Button and LED – LED blinking
when button is pressed | | | 2 nd | • Interfacing Button and LED – LED blinking when button is pressed | |------------------------|------------------------|---| | | 3 rd | • Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | | 4 th | • Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | 7 th | 1 st | • Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | | 2 nd | • Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | | 3 rd | • Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | | 4 th | • Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | 8 th | 1 st | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | | | 2 nd | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | | | 3 rd | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | | | 4 th | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | | 9 th | 1 st | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | | | 2 nd | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | | | 3 rd | Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | | 4 th | Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | 1 st | Interfacing Liquid Crystal Display(LCD) –
display data generated by sensor | |------------------------|---| | 2 nd | Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | 3 rd | Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | 4 th | • Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | 1 st | • On LCD Interfacing Air Quality Sensor-pollution (e.g. MQ135) – display data on LCD | | 2 nd | • On LCD Interfacing Air Quality Sensor-pollution (e.g. MQ135) – display data on LCD | | 3 rd | • On LCD Interfacing Air Quality Sensor-
pollution (e.g. MQ135) – display data on LCD | | 4 th | • On LCD Interfacing Air Quality Sensor-
pollution (e.g. MQ135) – display data on LCD | | 1 st | • On LCD Interfacing Air Quality Sensor-pollution (e.g. MQ135) – display data on LCD | | 2 nd | • On LCD Interfacing Air Quality Sensor-pollution (e.g. MQ135) – display data on LCD | | 3 rd | ,• Switch on LED when data sensed is higherthan specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | 4 th | ,• Switch on LED when data sensed is higherthan specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | 1 st | ,• Switch on LED when data sensed is higherthan specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | 2 nd | ,• Switch on LED when data sensed is higherthan specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | 3 rd | ,• Switch on LED when data sensed is higherthan specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | | 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 2nd 3rd 2nd 3rd 2nd 3rd | | | 4 th | ,• Switch on LED when data sensed is higherthan specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | |------------------|------------------------|--| | 14 th | 1 st | ,• Switch on LED when data sensed is higherthan specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | | 2 nd | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | | 3 rd | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | | 4 th | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | 15 th | 1 st | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | | 2 nd | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | | 3 rd | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | | 4 th | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). |