| DISCIPLINE: IT | SEMESTER: 6 th | NAME OF THE TEACHING FACULTY: SUJATA KUMARI
ACHARYA | |------------------------|---------------------------|--| | SUBJECT: CNS | NO.OF DAYS/PER WEEK | SEMESTER FROM DATE: 16/01/24 | | | CLASS ALLOTTED:4 | TO DATE: 01/05/2024 | | | | NO.OF WEEKS: 15 | | WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS | | 1 ST | 1 ST | Possible attacks on computers | | | 2 ND | The need for security | | | 3 RD | Security approach | | | 4 [™] | Principles of security | | 2 ND | 1 ST | Types of attacks | | | 2 ND | Cryptography concepts | | | 3 RD | Cryptography concepts | | | 4 TH | Plain text | | 3 RD | 1 ST | Cipher Text | | | 2 _{ND} | Substitution techniques | | | 3 RD | Transposition techniques | | | 4 TH | Encryption techniques | | 4 TH | 1 ST | Decryption techniques | | | 2ND | Symmetric key cryptography | | | 3 RD | Asymmetric key cryptography | | | 4 TH | Symmetric key algorithms | | 5 [™] | 1 ST | Symmetric key algorithm types | | <u> </u> | 2ND | Symmetric key algorithm types | | | 3 RD | Asymmetric key algorithms | | | 4 [™] | Asymmetric key algorithm types | | 6 [™] | 1 ST | Overview of Symmetric key cryptography | | - | 2 ND | Overview of Symmetric key cryptography | | | 3 RD | Data encryption standards | | | 4 TH | Data encryption standards | | 7 TH | 1 ST | Over view of Asymmetric key cryptography | | | 2 ND | The RSA algorithm | | | 3 RD | The RSA algorithm | | | 4 TH | Symmetric key cryptography | | 8 TH | 1 ST | Asymmetric key cryptography | | - | 2ND | Digital signature | | | 3 RD | Digital certificate | | | 4 TH | Digital certificates | | 9 тн | 1 ST | Public key infrastructure | | | 2ND | Private key management | | | 3 RD | Private key management | | | 4 TH | PKIX Model | | 10 TH | 1 ST | PKIX Model | | ±U | 2 ND | Public key cryptography standards | | | 3 RD | Public key cryptography standards | | | 4 TH | Public key cryptography standards | | 11 [™] | 1 ST | Internet security protocols | |------------------|---|---| | | 2 ND | Basic concept | | | 3 RD | Secure socket layer | | | 4 TH | Transport layer security | | 12 [™] | 1 ST | Transport layer security | | | 2 ND | Secure Hyper text transfer protocol(SHTTP) | | | 3 RD | Secure Hyper text transfer protocol(SHTTP) | | | 4 TH | Time stamping protocol (TSP) | | 13 TH | 1 ST | Secure electronic transaction (SET) | | | 2 ND | User authentication | | | 3 RD | Authentication basics | | | 4 TH | Password | | 14 TH | 1 ST | Authentication Tokens | | | 2 ND | Certificate based authentication | | | 3 RD | Biometric authentication | | | 4 TH | Network Security & VPN | | 15 [™] | 1 ST | Brief introduction of TCP/IP | | | 2 ND | Firewall | | | 3 RD | IP Security | | | 4 TH | Virtual Private Network (VPN) | | DISCIPLINE: IT | SEMESTER: 6 th | NAME OF THE TEACHING FACULTY: SMT | | | | NAYANA PATEL | | SUBJECT: IOT | NO.OF DAYS/PER WEEK | SEMESTER FROM DATE:16/01/24 | | | CLASS ALLOTTED:4 | TO DATE: 01/05/2024 | | | | NO.OF WEEKS:15 | | WEEK | CLASS DAY | THEORY TOPICS | | 1 ST | 1 ST | Introduction to Internet of Things. | | | | Introduction.Characteristics of IoT . Applications of Io | | | 2 ND | IoT Categories | | | | IoT Enablers and connectivity layers | | | 3 RD | Baseline Technologies | | | | Sensor | | | ∆™ | Actuator | | | _ 7 | | | 2 ND | 1 ST | IoT components and implementation | | 2 ND | • | Challenges for IoT | | 2 ND | 1 ST | Challenges for IoT IOT Networking . Terminologies. | | 2 ND | 1 ST 2 ND | Challenges for IoT IOT Networking . Terminologies. Gateway Prefix allotment | | 2 ND | 1 ST 2 ND 3 RD | Challenges for IoT IOT Networking . Terminologies. Gateway Prefix allotment Impact of mobility on Addressing | | | 1 ST
2 ND
3 RD
4 TH | Challenges for IoT IOT Networking . Terminologies. Gateway Prefix allotment Impact of mobility on Addressing Multihoming | | | 1 ST 2 ND 3 RD 4 TH 1 ST | Challenges for IoT IOT Networking . Terminologies. Gateway Prefix allotment Impact of mobility on Addressing Multihoming Deviation from regular Web 2.6 | | | 1 ST 2 ND 3 RD 4 TH 1 ST 2 ND | Challenges for IoT IOT Networking . Terminologies. Gateway Prefix allotment Impact of mobility on Addressing Multihoming Deviation from regular Web 2.6 IoT identification and Data protocols | | | 1 ST 2 ND 3 RD 4 TH 1 ST 2 ND 3 RD | Challenges for IoT IOT Networking . Terminologies. Gateway Prefix allotment Impact of mobility on Addressing Multihoming Deviation from regular Web 2.6 IoT identification and Data protocols Connectivity Technologies . Introduction. | | 3 RD | 1 ST 2 ND 3 RD 4 TH 1 ST 2 ND 3 RD 4 TH | Challenges for IoT IOT Networking . Terminologies. Gateway Prefix allotment Impact of mobility on Addressing Multihoming Deviation from regular Web 2.6 IoT identification and Data protocols Connectivity Technologies . Introduction. IEEE 802.15.4 | | 3 RD | 1 ST 2 ND 3 RD 4 TH 1 ST 2 ND 3 RD 4 TH 1 ST 2 ND 3 RD 4 TH 1 ST | Challenges for IoT IOT Networking . Terminologies. Gateway Prefix allotment Impact of mobility on Addressing Multihoming Deviation from regular Web 2.6 IoT identification and Data protocols Connectivity Technologies . Introduction. IEEE 802.15.4 IEEE 802.15.4 | | 3 RD | 1 ST 2 ND 3 RD 4 TH 1 ST 2 ND 3 RD 4 TH 1 ST 2 ND 3 RD 4 TH 1 ST 2 ND | Challenges for IoT IOT Networking . Terminologies. Gateway Prefix allotment Impact of mobility on Addressing Multihoming Deviation from regular Web 2.6 IoT identification and Data protocols Connectivity Technologies . Introduction. IEEE 802.15.4 | | | 2 ND | NFC, Bluetooth, Z wave, ISA100.11.A | |------------------|------------------------|---| | | 3 RD | Introduction. Components of a sensor node . Modes | | | | of Detection | | | 4 TH | Challenges in WSN .Sensor Web .Cooperation and | | | | Behaviour of Nodes in WSN | | 6 [™] | 1 ST | Self Management of WSN .Social sensing WSN | | | 2 ND | Application of WSN . Wireless Multimedia sensor | | | | network | | | 3 RD | Wireless Nanosensor Networks. Underwater | | | | acoustic sensor networks. | | | 4 [™] | WSN Coverage .Stationary WSN, Mobile WSN. | | 7 TH | 1 ST | M2M communication | | | 2 ND | M2M communication | | | 3 RD | M2M Ecosystem | | | 4 ™ | M2M Ecosystem | | 8 TH | 1 ST | M2M service Platform | | | 2 ND | Interoperability | | | 3 RD | Programming with Arduino .Features of Arduino | | | 4 [™] | Components of Arduino Board. | | 9 TH | 1 ST | Arduino IDE | | | 2 ND | Case Studies | | | 3 RD | Case Studies | | | 4 [™] | Programming with Raspberry Pi | | 10 TH | 1 ST | Architecture and Pin Configuration | | 10 | 2 _{ND} | Case studies | | | 3 RD | Implementation of IoT with Raspberry Pi | | | 4 [™] | Implementation of IoT with Raspberry Pi | | 11 TH | 1 ST | Software defined Networking .Limitation of current | | | - | network | | | 2 ND | Origin of SDN . SDN Architecture | | | 3 RD | Rule Placement, Open flow Protocol | | | 4 [™] | Controller placement | | 12 [™] | 1ST | Security in SDN | | 12 | J _{ND} | Integrating SDN in IoT | | | 3 RD | Smart Homes. Origin and example of Smart Home | | | 3 | Technologies | | | 4 [™] | Smart Home Implementation | | 13 TH | 1 ST | Home Area Networks(HAN) | | 1.5 | 3 ND | Home Area Networks(HAN) | | | 3 RD | Smart Home benefits and issues | | | 4 TH | Smart Cities. Characteristics of Smart Cities . Smart | | | 4 | city Frameworks | | 14 TH | 1 ST | Challenges in Smart cities | | 14``` | 2ND | Data Fusion | | | 3 RD | Smart Parking | | | 4 TH | Energy Management in Smart cities | | 15 [™] | 1 ST | Industrial IoT. IIoT requirements | |--------------------|--------------------------------------|--| | | 2 ND | Design considerations | | | 3 RD | Applications of IIoT . Benefits of IIoT . | | | 4 [™] | Challenges of IIoT | | DISCIPLINE : IT | SEMESTER:6 th | NAME OF THE TEACHING FACULTY: SMT SUMITRA MAHAPATRA | | SUBJECT: CC | NO.OF DAYS/PER WEEK CLASS ALLOTTED:4 | SEMESTER FROM DATE: 16/01/24
TO DATE: 01/05/2024
NO.OF WEEKS:15 | | WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS | | 1 st | 1 st | 1.1. Historical development 1.2. Vision of Cloud Computing | | | 2 nd | 1.3. Characteristics of Cloud computing1.4. Cloud computing Reference model | | | 3 rd | 1.5. Cloud computing environment1.6. Cloud Service requirements | | | 4 th | 1.7. Cloud and Dynamic Infrastructure1.8. Cloud Adoption | | 2 nd | 1 st | 1.9. Cloud applications | | | 2 nd | 2.1. Introduction 2.2. Cloud Reference Model | | | 3 rd | 2.1. Introduction 2.2. Cloud Reference Model | | | 4 th | 2.3. Types of Clouds | | 3 rd | 1 st | 2.3. Types of Clouds | | | 2 nd | 2.4. Cloud Interoperability and standards | | | 3 rd | 2.4. Cloud Interoperability and standards | | | 4 th | 2.5. Cloud computing Interoperability use cases | | 4 th | 1 st | 2.6. Role of standards in Cloud Computing environment | | | 2 nd | 3.1. Introduction3.2. Scalability and Fault Tolerance | | | 3 rd | 3.1. Introduction3.2. Scalability and Fault Tolerance | | 4 th | 3.3. Cloud solutions | |------------------------|---| | | 3.4. Cloud Ecosystem | | | | | 1 st | 3.5. Cloud Business process management | | | 3.6. Portability and Interoperability | | | 0.7 (1) 10 | | 2 nd | 3.7. Cloud Service management | | | 3.8. Cloud Offerings | | 3rd | 3.9. Testing under Control | | 3 | 3.10. Cloud service Controls | | | | | 4 th | 3.11. Virtual desktop Infrastructure | | | 3.11. Virtual desktop Infrastructure | | 1 st | 3.11. Virtual desktop imrastructure | | 2 nd | 4.1. Create a virtualised Architecture | | | 4.2. Data Centre | | 3 rd | 4.3. Resilience | | | 4.4. Agility | | 4 th | 4.5. Cisco Data Centre Network architecture | | 1 st | 4.6. Storage | | _ | 4.7. Provisioning | | 2 nd | 4.8. Asset Management | | | 4.9. Concept of Map Reduce | | 3 rd | 4.9. Concept of Map Reduce | | ₄ th | 4.10. Cloud Goverance | | , | 4.11. Load Balancing | | 1 st | 4.12. High Availability | | | 4.13. Disaster Recovery | | 2 nd | 5.1. Virtualisation | | | 5.2. Betwork Virtualisation | | 3 rd | 5.3. Desktop and Application Virtualisation | | 4 th | 5.4. Desktop as a service | | 1 st | 5.5. Local desktop Virtualisation | | | 5.6. Virtualisation benefits | | 2 nd | 5.7. Server Virtualisation | | | 1st 2nd 3rd 4th 1st | | | 3 rd | 5.8. Block and File level Storage Virtualisation | |------------------|-----------------|--| | | 4 th | 5.9. Virtual Machine Monitor | | | | 5.10. Infrastructure Requirements | | 10 th | 1 st | 5.11. VLAN and VSAN | | | 2 nd | 6.1. Cloud Security Fundamentals | | | 3 rd | 6.2. Cloud security services | | | 4 th | 6.2. Cloud security services | | 11 th | 1 st | 6.3. Design Principles | | | 2 nd | 6.3. Design Principles | | | 3 rd | 6.4. Secure Cloud software requirements | | | 4 th | 6.5. Policy Implementation | | 12 th | 1 st | 6.6. Cloud Computing Security Challenges | | | 2 nd | 7.1. Architectural Considerations | | | 2 | 7.2. Information Classification | | | 3 rd | 7.3. Virtual Private Networks | | | 3 | 7.4. Public Key and Encryption Key | | | | management | | | 4 th | 7.5. Digital certificates | | | | 7.6. Key management | | | | 7.7. Memory Cards | | 13 th | 1 st | 7.6. Key management | | | _ | 7.7. Memory Cards | | | 2 nd | 7.8. Implementing Identity Management | | | | 7.9. Controls and Autonomic System | | | 3 rd | 8.1. Cloud Information security vendors | | | 4 th | 8.2. Cloud Federation, charactrization | | 14 th | 1 st | 8.3. Cloud Federation stack | | | 2 nd | 8.4. Third Party Cloud service | | | 3 rd | 8.5. Case study | | | 4 th | 9.1. Introduction | | 15 th | 1 st | 9.2. Data Source | |------------------------|---|---| | | 2 nd | 9.2. Data Source | | | 3 rd | 9.3. Data storage and Analysis | | | 4 th | 9.4. Comparison with other system | | DISCIPLINE : IT | SEMESTER: 6 th | NAME OF THE TEACHING FACULTY: DENESH KUMAR GAUDA | | SUBJECT: ST | NO.OF DAYS/PER WEEK
CLASS ALLOTTED:4 | SEMESTER FROM DATE: 16/01/24
TO DATE: 01/05/2024
NO.OF WEEKS:15 | | WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS | | 1 ST | 1 ST | Introduction, Testing Process | | - | 2 ND | What is s/w Testing, Purpose of testing | | | 3 RD | who should test, what to test | | | 4 TH | selection of good test case, Measurement of progress | | 2 ND | 1 ST | Incremental testing approach | | | 2 ND | Basic terminology, Testing Life cycle | | | 3 RD | when to stop testing, Principle of testing | | | 4 TH | Limitation of testing, Availability of testingtool, techniques, metrics | | 3 RD | 1 ST | Introduction, Verification and Validation | | | 2ND | QA and QC, V&V Limitations | | | 3 RD | Categorising V&V techniques, Role of V&V in SDLC | | | 4 TH | Proof of correctness, Simulation & Prototyping, Requirement Tracing, s/w v&v planning | | 4 TH | 1 ST | s/w testing review, Independent v&v contractor | | | 2 ND | positive &negative effect of v&v on projects,
Standard for s/w test documentation | | | 3 RD | Introduction, BVA | | | 4 TH | BVA | | 5 [™] | 1 ST | Equivalence class testing | | | 2 ND | Equivalence class testing | | | 3 RD | Dicision Table based testing | | | 4 [™] | Dicision Table based testing | | 6 TH | 1 ST | Cause effect graphing technique | | | 2 ND | Cause effect graphing technique | | | 3 RD | Comparision of techniques | | | 4 [™] | Comparision of techniques | | 7 [™] | 1 ST | Introduction, static vs. dynamic testing | |-----------------------|------------------------|---| | | 2 ND | Static vs. dynamic testing | | | 3 RD | Static vs. dynamic testing Static vs. dynamic testing | | | | Static vs. dynamic testing Static vs. dynamic testing | | -71 | 4 [™] | Dynamic WB testing techniques | | 8 TH | 1 ST | Dynamic WB testing techniques Dynamic WB testing techniques | | | 2 ND | Mutation Testing vs. error seeding | | | 3 RD | e e | | | 4 TH | Mutation Testing vs. error seeding | | 9™ | 1 ST | Comparision of BB and WB testing techniques | | | 2 ND | Comparison of WB testing techniques, advantages | | | 3 RD | Introduction, What is Gray Box Testing | | | 4 [™] | What is Gray Box Testing | | 10 [™] | 1 ST | Difinitions of Gray Box Testing | | | 2 ND | Difinitions of Gray Box Testing | | | 3 RD | Comparision of WB, BB, GB | | | 4 [™] | Comparision of WB, BB, GB | | 11 TH | 1 ST | Prioritization Guidelines | | | 2 ND | Priority Category Schemes | | | 3 RD | Risk Analysis | | | 4 [™] | Regression Testing | | 12 TH | 1 ST | Prioritization of test cases for regression Testing | | | 2 ND | Regression Testing Techniques | | | | Introduction, Unit, Integration, System, | | | 3 RD | acceptance testing | | | 4 TH | Integration Tesing, classification, decomposition | | 13 [™] | 1 ST | Call graph, path based integration | | | 2 ND | Call graph, path based integration | | | 3 RD | System Testing | | | | System Testing | | 14 [™] | 1 ST | Automated testing, Considerations during | | 14 | 1 | testing | | | 2 ND | Types of Testing Tools- static vs Dynamic, problems with manual Testing | | | | Benefits of Automated Testing, | | | 3 RD | Disadvantages of Automated testing | | | 4 TH | Skill needed for using automated tools | | 15 [™] | 1 ST | Test Automation | | | 2 ND | Debugging | | | 3 RD | Criteria for for selection of test tools | | | 4 [™] | steps for tool selection | | DISCIPLINE: IT | SEMESTER:6 th | NAME OF THE TEACHING FACULTY: SMT | | |----------------|--------------------------|-----------------------------------|--| | | | | | | | | REETANJALI PANDA & SUJATA KUMARI ACHARYA | |-----------------|--------------------------------------|---| | SUBJECT: NS LAB | NO.OF DAYS/PER WEEK CLASS ALLOTTED:4 | SEMESTER FROM DATE: 16/01/24 TO DATE: 01/05/2024 NO.OF WEEKS:15 | | WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS | | 1 st | 1 st | I. Installation and comparison of various anti virus software | | | 2 nd | Installation and comparison of various anti virus software | | | 3 rd | Installation and comparison of various anti virus software | | | 4 th | Installation and comparison of various anti virus software | | 2 nd | 1 st | Installation and comparison of various anti virus software | | | 2 nd | Installation and comparison of various anti virus software | | | 3 rd | Installation and comparison of various anti virus software | | | 4 th | Installation and comparison of various anti virus software | | 3 rd | 1 st | 2. Installation and study of various parameters of firewall. | | | 2 nd | 2. Installation and study of various parameters of firewall. | | | 3 rd | 2. Installation and study of various parameters of firewall. | | | 4 th | 2. Installation and study of various parameters of firewall. | | 4 th | 1 st | 2. Installation and study of various parameters of firewall. | | | 2 nd | 2. Installation and study of various parameters of firewall. | | | 3 rd | 2. Installation and study of various parameters of firewall. | | | 4 th | 2. Installation and study of various parameters of firewall. | | 5 th | 1 st | 3. Writing program in C to Encrypt/Decrypt using XOR key. | |------------------|-----------------|---| | | I | | | | 2 nd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 3 rd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 4 th | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | 6 ^h | 1 st | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 2 nd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 3 rd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 4 th | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | 7 th | 1 st | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 2 nd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 3 rd | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | | 4 th | 3. Writing program in C to Encrypt/Decrypt using XOR key. | | 8 th | 1 st | 4. Study of VPN. | | | 2 nd | 4. Study of VPN. | | | 3 rd | 4. Study of VPN. | | | 4 th | 4. Study of VPN. | | 9 th | 1 st | 4. Study of VPN. | | | 2 nd | 4. Study of VPN. | | | 3 rd | 4. Study of VPN. | | | 4 th | 4. Study of VPN. | | 10 th | 1 st | 4. Study of VPN. | | | 2 nd | 5. Study of various hacking tools. | | | 3 rd | 5. Study of various hacking tools. | # <u>LESSON PLAN - 2023 - 2024</u> | | 4 th | 5. Study of various hacking tools. | |------------------|---------------------------|--| | 11 th | 1 st | 5. Study of various hacking tools. | | | | | | | 2 nd | 5. Study of various hacking tools. | | | 3 rd | 5. Study of various hacking tools. | | | 4 th | 5. Study of various hacking tools. | | 12 th | 1 st | 5. Study of various hacking tools. | | | 2 nd | 5. Study of various hacking tools. | | | 3 rd | 5. Study of various hacking tools. | | | 4 th | 5. Study of various hacking tools. | | 13 th | 1 st | 5. Study of various hacking tools. | | | 2 nd | 5. Study of various hacking tools. | | | 3 rd | 6. Practical applications of digital signature | | | 4 th | 6. Practical applications of digital signature | | 14 th | 1 st | 6. Practical applications of digital signature | | | 2 nd | 6. Practical applications of digital signature | | | 3 rd | 6. Practical applications of digital signature | | | 4 th | 6. Practical applications of digital signature | | 15 th | 1 st | 6. Practical applications of digital signature | | | 2 nd | 6. Practical applications of digital signature | | | 3 rd | 6. Practical applications of digital signature | | | 4 th | 6. Practical applications of digital signature | | DISCIPLINE: IT | SEMESTER: 6 th | NAME OF THE TEACHING FACULTY: SMT SUMITRA MAHAPATRA & NAYANA PATEL | | SUBJECT:IOT LAB | NO.OF DAYS/PER WEEK CLASS ALLOTTED:4 | SEMESTER FROM DATE: 16/01/24 TO DATE: 01/05/2024 NO.OF WEEKS:15 | |-----------------|--------------------------------------|---| | WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS | | 1 st | 1 st | Basics of C language using Arduino IDE
Understating basics of Arduino IDE | | | 2 nd | Basics of C language using Arduino IDE
Understating basics of Arduino IDE | | | 3 rd | Variables, datatype, loops, control statement, function | | | 4 th | Variables, datatype, loops, control statement, function | | 2 nd | 1 st | Variables, datatype, loops, control statement, function | | | 2 nd | Variables, datatype, loops, control statement, function | | | 3 rd | Variables, datatype, loops, control statement, function | | | 4 th | Variables, datatype, loops, control statement, function | | 3 rd | 1 st | Variables, datatype, loops, control statement, function | | | 2 nd | Variables, datatype, loops, control statement, function | | | 3 rd | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | | 4 th | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | 4 th | 1 st | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | | 2 nd | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | | | 3 rd | Practical using Arduino-interfacing sensors
Interfacing Light Emitting Diode(LED)- Blinking
LED | | | 4 th | Practical using Arduino-interfacing sensors Interfacing Light Emitting Diode(LED)- Blinking LED | |-----------------|-----------------|---| | 5 th | 1 st | Interfacing Button and LED – LED blinking
when button is pressed | | | 2 nd | Interfacing Button and LED – LED blinking
when button is pressed | | | 3 rd | • Interfacing Button and LED – LED blinking when button is pressed | | | 4 th | Interfacing Button and LED – LED blinking
when button is pressed | | 6 ^h | 1 st | Interfacing Button and LED – LED blinking
when button is pressed | | | 2 nd | Interfacing Button and LED – LED blinking
when button is pressed | | | 3 rd | Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | | 4 th | • Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | 7 th | 1 st | • Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | | 2 nd | Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | | 3 rd | Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | | 4 th | Interfacing Light Dependent Resistor (LDR) and LED, displaying automatic | | 8 th | 1 st | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | | | 2 nd | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | | | 3 rd | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | # <u>LESSON PLAN - 2023 - 2024</u> | | 4 th | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | |------------------|-----------------|---| | 9 th | 1 st | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor
(e.g.DHT11 | | | 2 nd | • Night lamp Interfacing Temperature
Sensor(LM35) and/or humidity sensor | | | | (e.g.DHT11 | | | 3 rd | Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | | 4 th | Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | 10 th | 1 st | Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | | 2 nd | Interfacing Liquid Crystal Display(LCD) — display data generated by sensor | | | 3 rd | Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | | 4 th | Interfacing Liquid Crystal Display(LCD) – display data generated by sensor | | 11 th | 1 st | • On LCD Interfacing Air Quality Sensor-
pollution (e.g. MQ135) – display data on
LCD | | | 2 nd | On LCD Interfacing Air Quality Sensor-
pollution (e.g. MQ135) – display data on
LCD | | | 3 rd | On LCD Interfacing Air Quality Sensor-
pollution (e.g. MQ135) – display data on
LCD | | | 4 th | On LCD Interfacing Air Quality Sensor-
pollution (e.g. MQ135) – display data on
LCD | | 12 th | 1 st | • On LCD Interfacing Air Quality Sensor-
pollution (e.g. MQ135) – display data on
LCD | # <u>LESSON PLAN - 2023 - 2024</u> | | 2 nd | • On LCD Interfacing Air Quality Sensor-pollution (e.g. MQ135) – display data on LCD | |------------------|------------------------|--| | | 3 rd | ,• Switch on LED when data sensed is higher than specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | | 4 th | ,• Switch on LED when data sensed is higher than specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | 13 th | 1 st | ,• Switch on LED when data sensed is | | | | higher than specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | | 2 nd | ,• Switch on LED when data sensed is higher than specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | | 3 rd | ,• Switch on LED when data sensed is higher than specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | | 4 th | ,• Switch on LED when data sensed is higher than specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | 14 th | 1 st | ,• Switch on LED when data sensed is higher than specified value. Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone | | | 2 nd | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | | 3 rd | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | | 4 th | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | 15 th | 1 st | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | |------------------|-----------------|--| | | 2 nd | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | | 3 rd | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). | | | 4 th | • On Arduino and display on LCD Interfacing Relay module to demonstrate Bluetooth based home automation• application. (using Bluetooth and relay). |