Question Bank for Fluid Mechanics

Chapter 1: Fluid Statics		
1	Define fluid and explain its classification into various types. (L1 – Remember, CO1)	
2	Describe the properties of fluids and their significance in fluid mechanics. (L2 – Understand, CO1)	
3	What is Newton's law of viscosity? Provide examples of Newtonian and Non-Newtonian fluids. (L1 – Remember, CO1)	
4	Derive the manometric equation and explain its significance in fluid measurement. (L3 – Apply, CO2)	
5	Explain the concept of hydrostatic equilibrium and how pressure head is determined in fluids. (L2 – Understand, CO1)	
6	Calculate the pressure difference using a manometer for a given fluid system. (L3 – Apply, CO2)	
7	List and explain different types of manometers used in fluid statics. (L1 – Remember, CO2)	
8	How does fluid pressure vary with depth in a static fluid? (L2 – Understand, CO1)	
9	Discuss the importance of fluid pressure measuring devices in industrial applications. (L4 – Analyze, CO3)	
10	Analyze the effect of fluid properties on the measurement of fluid pressure. (L4 – Analyze, CO3)	
Chapter 2: Fluid Flow Phenomena		
1.	What is laminar flow? How does it differ from turbulent flow? (L1 – Remember, CO1)	
2.	Define Reynolds number and explain its significance in determining the flow type. (L2 – Understand, CO1)	
3.	State Bernoulli's theorem and explain its applications in fluid flow problems. (L2 – Understand, CO2)	
4.	Calculate the Reynolds number for a flow of water through a pipe of diameter 0.2 m and velocity 4 m/s. The kinematic viscosity of water is 1.0×10-6m2/s. (L2 –CO2)	
5.	Given the pressure at point A as 300 kPa300 , the velocity at point A as 4 m/s, and the velocity at point B as 2 m/s, calculate the pressure at point B using Bernoulli's equation. Assume the density of the fluid is 1000 kg/m3.(L3 – Apply, C202.2)	
6.	A pipe is carrying a fluid with a velocity of 5 m/s. The diameter of the pipe is 0.3 m. Calculate the flow rate of the fluid.(L3, C202.2)	
7.	Describe how friction losses occur in pipes and explain the factors that influence them. (L2 – Understand, CO2)	
8	Calculate the frictional losses in a pipe using the Darcy-Weisbach equation. Assume any data if not given (L3 – Apply, CO2)	
9	Evaluate the effects of sudden enlargement and contraction on fluid flow in pipes. (L4 – Analyze, CO3)	
Ch	apter 3: Flow Measurement	

1.	Define and explain the working principle of an orifice meter. (L1 – Remember, CO2)		
2.	What is a venturi meter and how is it used to measure flow rate? (L1 – Remember, CO2)		
3.	Describe the operation and calibration process of a rotameter. (L2 – Understand, CO2)		
4.	Explain the working of a Pitot tube and its application in flow measurement. (L2 – Understand, CO2)		
5.	Solve a flow measurement problem using the orifice meter equation. (L3 – Apply, CO2)		
6	List and compare the advantages and disadvantages of different flow measuring devices. (L4 – Analyze, CO3)		
7	What factors should be considered when selecting a flow measuring device for a given application? (L3 – Apply, CO3)		
8	Derive an equation for flow measurement using a venturi meter and solve a practical problem. (L3 – Apply, CO2)		
9	Analyze the limitations of various flow measurement techniques in industrial processes. (L4 – Analyze, CO3)		
Ch	Chapter 4: Pumps and Fittings		
1.	What are the different types of pumps used in fluid transportation? (L1 – Remember, CO3)		
2.	Explain the working principle of a centrifugal pump. (L2 – Understand, CO3)		
3.	Describe the role of pipe fittings in fluid transportation systems. (L2 – Understand, CO3)		
4.	What are the performance characteristics of reciprocating pumps? (L3 – Apply, CO3)		
5.	Solve a problem involving the calculation of pump efficiency using performance curves. (L3 – Apply, CO3)		
6	Discuss cavitation in pumps and explain how it affects pump performance. (L2 – Understand, CO3)		
7	What is the concept of Net Positive Suction Head (NPSH) and why is it important in pump selection? (L2 – Understand, CO3)		
8	List the common types of valves used in fluid systems and explain their plications. (L1 – Remember, CO3)		
9	Analyze the troubleshooting steps for a centrifugal pump with air binding issues. (L4 – Analyze, CO3)		
Ch	Chapter 4: Fluidization		
1.	Define fluidization and explain its types. (L1 – Remember, CO3)		
2.	What is the minimum fluidization velocity and how is it determined? (L2 – Understand, CO3)		
3.	Explain the concept of pneumatic conveyance and its application in industries. (L2 – Understand, CO3)		

4.	Derive an expression for the pressure drop in a fluidized bed. (L3 – Apply, CO3)
5.	Solve a problem involving the calculation of minimum fluidization velocity for a
	given system. (L3 – Apply, CO3)
6	What are the factors affecting the pressure drop in fluidized beds? (L2 -
	Understand, CO3)
7	Discuss the applications of fluidized beds in industrial processes. (L4 – Analyze,
	CO3)
8	Analyze the flow characteristics in packed beds and explain their significance in
	fluidized systems. (L4 – Analyze, CO3)
9	Explain the differences between fixed bed and fluidized bed reactors. (L4 –
	Analyze, CO3)