Question Bank for Mass Transfer - II

Chapter 1: Humidification and Dehumidification		
	Define wet bulb and dry bulb temperatures and explain their significance in	
1.	humidification processes. (L1 – Remember, CO1)	
2.	Explain the principle of wet bulb temperature theory with examples. (L2 – Understand, CO1)	
3	Differentiate between absolute humidity and relative humidity with calculations. (L3 – Apply, CO1)	
4	Describe the construction and working of natural and mechanical draft cooling towers with diagrams. (L2 – Understand, CO2)	
5	Analyze the performance of a cooling tower based on given data. (L4 – Analyze, CO4)	
6.	Solve a numerical problem to determine the water loss due to evaporation in a cooling tower. (L4 – Analyze, CO4)	
6	Using a psychrometric chart, calculate the specific humidity and enthalpy of air at a given condition. (L3 – Apply, CO5)	
7	Explain the methods of humidification and dehumidification and their industrial applications. (L2 – Understand, CO2)	
8	Derive the equation for heat and mass transfer in a cooling tower. (L3 – Apply, CO4)	
9	Define wet bulb and dry bulb temperatures and explain their significance in humidification processes. (L1 – Remember, CO1)	
Chapter 2: Drying		
1.		
	Define drying and classify the types of moisture present in solids. (<i>L1 – Remember, CO1</i>)	
2.	Explain the constant rate and falling rate periods of drying with a drying rate curve. $(L2 - Understand, CO2)$	
3.	Differentiate between free moisture and bound moisture with examples. (L3 – Apply, CO2)	
4.	Describe the construction and working principle of a rotary dryer and fluidized bed dryer. (L2 – Understand, CO3)	
5.	Explain the mechanism of drying in a spray dryer and its application in food industries. <i>(L2 – Understand, CO2)</i>	
6.	Solve a problem to calculate the drying time for a batch process given the initial and final moisture content. ($L4 - Analyze$, $CO4$)	
7.	Perform an energy balance calculation for a tray dryer to determine the heat requirement. $(L4 - Analyze, CO4)$	
8	Compare the working principles of tunnel dryer and flash dryer with examples. $(L3 - Apply, CO2)$	
9	Explain the choice of dryer for heat-sensitive materials with industrial examples. <i>(L2 – Understand, CO3)</i>	
Chapter 3: Extraction		

1.	Define liquid-liquid extraction and explain its significance in chemical engineering. (<i>L1 – Remember, CO1</i>)
2.	Explain the principle of solid-liquid extraction with examples. $(L2 - Understand, CO1)$
3.	Differentiate between batch and continuous extraction methods with industrial applications. $(L3 - Apply, CO2)$
4.	Describe the construction and working of a mixer-settler used in liquid-liquid extraction. (<i>L2 – Understand, CO3</i>)
5.	Solve a numerical problem to determine the solvent-to-feed ratio in a liquid- liquid extraction process. (L4 – Analyze, CO4)
6	Explain the parameters affecting the choice of solvent in liquid-liquid extraction. $(L2 - Understand, CO2)$
7	Derive the material balance equation for a counter-current solid-liquid extraction system. $(L3 - Apply, CO4)$
8	Perform a calculation to determine the extraction efficiency for a given system using equilibrium data. $(L4 - Analyze, CO5)$
9	Describe the design and working of a continuous rotary extractor. (L2 – Understand, CO3)
Chapter 4: Crystallization	
1.	• Define crystallization and explain its significance in the purification of chemical products. (<i>L1 – Remember, CO1</i>)
2.	• Explain the factors affecting crystallization rate and crystal size. $(L2 - Understand, CO2)$
3.	• Differentiate between batch and continuous crystallizers with diagrams. (L3 – Apply, CO2)
4.	• Describe the construction and working of a vacuum crystallizer. (L2 – Understand, CO3)
5.	• Explain the concept of supersaturation and its role in crystallization. $(L2 - Understand, CO2)$
6	• Solve a numerical problem to calculate the yield of crystals from a saturated solution. $(L4 - Analyze, CO4)$
7	• Perform a material balance calculation for a crystallization process under steady- state conditions. (<i>L4 – Analyze, CO4</i>)
8	• Compare the working principles of evaporative crystallization and cooling crystallization. (L3 – Apply, CO3)
9	• Describe the design considerations for crystallizers used in the pharmaceutical industry. (L2 – Understand, CO3)