Question Bank for Mass Transfer - I

Chapter 1 FUNDAMENTALS OF MASS TRANSFER	
l.	Explain the importance of mass transfer operations in chemical engineering. ($L1$ – $Remember, CO1$)
2.	State and explain the general principles of mass transfer operations with examples. (L2 – Understand, CO1)
3	Classify mass transfer operations and provide examples of each type. (L2 – Understand, CO1)
4	Differentiate between molecular diffusion and interphase diffusion. (L3 – Apply, CO1)
5	Describe diffusion in gases and liquids with suitable examples. (L2 – Understand, CO2
6.	Derive Fick's law of diffusion and explain its significance in mass transfer. (L3 – Apply, CO1)
Chap	ter 2 DISTILLATION
1.	Draw and explain different types of boiling point diagrams. (L1 – Remember, CO2)
2.	Define vapour-liquid equilibrium and explain its significance in distillation. (L2 Understand, CO2)
3.	Derive the expression relating relative volatility (α) to mole fractions (x-y) in distillation. (L3 – Apply, CO4)
4.	Construct an equilibrium curve for a binary system from given data. (L4 – Analyze, CO5)
5.	Derive Rayleigh's equation for simple distillation and solve a basic problem using the equation. (L3 – Apply, CO3)
6.	Perform a material balance calculation for flash distillation. (L4 – Analyze, CO5)
7.	Analyze a fractionating column using McCabe-Thiele Method to determine feed plate location. (L4 – Analyze, CO4)
8	Explain the concept of minimum, optimum, and total reflux ratio with examples. (L2 – Understand, CO3)
9	Describe the construction and working of a rectification column. (L2 – Understand, CO4)
10	Identify the types of trays and reboilers used in distillation and explain their functions (L3 – Apply, CO3)
Chap	ter 3 ABSORPTION
1.	Explain the principles of absorption and list factors affecting the rate of absorption. (L1 – Remember, CO1)
2.	Describe the different types of equipment used for absorption. (L2 – Understand, CO3,
3.	Differentiate between regular and random packing materials used in absorption towers (L3 – Apply, CO3)

4.	Define loading and flooding in packed columns and describe their effects on pressure drop. (L2 – Understand, CO4)
5.	Perform a calculation to determine the minimum gas-liquid ratio in an absorption system. (L4 – Analyze, CO5)
Chapter 4 ADSORPTION	
1.	Define adsorption and explain its types with examples. (L1 – Remember, CO1)
2.	List the factors affecting adsorption and explain their influence. (L2 – Understand, CO3)
3.	Describe different types of adsorbents and their properties. (L2 – Understand, CO3)
4.	Explain the concepts of elutriation and percolation with industrial applications. (L2 – Understand, CO6)
5.	Draw and explain the construction and working of industrial adsorption equipment. (L3 – Apply, CO4)