Lecture Notes
On
Microprocessor and Microcomputer
(For 4th Semester CSE/IT)

Prepared by:
Miss Barsha Subudhi Ray

Guest faculty (CSE/IT)
UCP Engineering School Berhampur.

Unit -1

Microprocessor and Microcomputer:
Microprocessor:
The processor on a single chip is called a Microprocessor which can process micro-instructions.
Instructions in the form of Osand 1s are called micro-instructions. The microprocessor is the
CPU part of a microcomputer, and it is also available as a single integrated circuit. Thus as main
components, the microprocessor will have theControl Unit (CU) and the Arithmetic Logic Unit
(ALU) of a microcomputer. An example is Intel 8085 microprocessor. In addition to the
microprocessor features, a microcomputer will have the following additional features:

e ROM/PROM/EPROM/EEPROM for storing program;

* RAM for storing data, intermediate results, and final results;
* |/O devices for communication with the outside world;
e 1/0 ports for communication with the 1/0 devices.

Microcomputer:

A microcomputer can be defined as a small sized, inexpensive, and limited capability computer.
It has the same architectural block structure that is present on a computer. Present-day
microcomputers are having smaller sizes. Nowadays, they are of the size of a notebook. But in
the coming days also their sizes will get more reduced as well. Due to their lower costs,
individuals can possess them as their personal computers. Because of mass production, they
are becoming still cheaper. Initially, in the earlier days, they were not very much powerful.
Their internal operations and instructions were very much limited and restricted. But at present
days, microcomputers have not only multiplied and divide instructions on unsigned and signed
numbers but are also capable of performing floating point arithmetic operations

Microprocessor Micro computer
* itis astandalone device « Microcomputer is a miniature
computer whis has microprocessor as
+ microprocessor doesn’t have memory well as other peripheral devices.
inside it to use memory it is connected + Microcomputer hasromand ram
by address and data bus inside itself.

Evolution of Microprocessor:
1. 4-bit Microprocessor: The first microprocessor (Intel 4004) was invented in 1971. It was
a 4-bit calculation device with a speed of 108 kHz. Since then, microprocessor power has
grown exponentially. It has 3200 PMOS transistors. It is a 4-bit device used in calculator.

8-Bit microprocessor:

In 1972, Intel came out with the 8008 which is 8-bit. In 1974, Intel announced the 8080
followed by 8085 i.e a 8-bit processor 8085 processor has 8 bit ALU (Arithmetic Logic unit).
Similarly 8086 processor has 16 bit ALU. This had a larger instruction set then 8080. used NMOS
transistors, so it operated much faster than the 8008. The 8080 is referred to as a “Second
generation Microprocessor”.

. Third Generation (16 - bit Microprocessor):

The third generation microprocessors, introduced in 1978 were represented by Intel's 8086,
Zilog Z800 and 80286, which were 16 - bit processors with a performance like minicomputers.
Fourth Generation (32 - bit Microprocessors):

Several different companies introduced the 32-bit microprocessors, but the most popular one is
the Intel 80386. It has around 275000 transitors.

Fifth Generation (64 - bit Microprocessors):
From 1995 to now we are in the fifth generation. After 80856, Intel came out with a new
processor namely Pentium processor followed by Pentium Pro CPU, which allows multiple CPUs

in a single system to achieve multiprocessing. Other improved 64-bit processors are Celeron,
Dual, Quad, Octa Core processors.

Bus structure:

The simplest and most common way of interconnecting various parts of the computer. To
achieve a reasonable speed of operation, a computer must be organized so that all its units can
handle one full word of data at a given time.A group of lines that serve as a connecting port for
several devices is called a bus. In addition to the lines that carry the data, the bus must have
lines for address and control purpose. Simplest way to interconnect is to use the single bus as
shown

INPUT MEMORY PROCESSOR ouTPUT

01 1 1

Since the bus can be used for only one transfer at a time, only two units can

actively use the bus at any given time. Bus control lines are used to arbitrate multiple
requests for use of one bus.

I A —:
;:l . Address Bus
I L
8085 Memory Inpuit
; ' Output :D Real
MPU World

D,

(=

Address Bus:

The address bus is a group of 16 lines generally identified as AO to A15.

The address bus is unidirectional: bits flow in one direction-from the MPU to peripheral
devices.

The MPU uses the address bus to perform the first function: identifying a peripheral or a
memory location.

Data bus:

The data bus is a group of eight lines used for data flow.

These lines are bi-directional - data flow in both directions between the MPU and
memory and peripheral devices.

The MPU uses the data bus to perform the second function: transferring binary
information.

The eight data lines enable the MPU to manipulate 8-bit data ranging from O0H to FFH
(28 = 256 numbers).

The largest number that can appear on the data busis 11111111 i.e OFFH.

Control Bus:

* The control bus carries synchronization signals and providing timing signals.
* The MPU generates specific control signals for every operation it performs. These
signals are used to identify a device type with which the MPU wants to communicate.

Architecture of 8085 (8 bit) Microprocessor

INTA RaTes TRAP - <o
INTR |RsT 55| RET 7.5 ! The 8085
Tl eyl ! i

Iniermup t control | Serial 10 control |

I I

| 8-Bit Intemal data bus

j j j i ﬂ
B C
T E REG REG
=y ag Instruction |44 D E
Accumulzior reg fip-flops regsier i REG | REG
H L
REG REG
+ ! $ + T * ‘U__’ Sitn o poi niter
Asithmetic Instruct -:-::j 8| Program counter
ogic deonder &
unit N— maching i I mcre menter
(AL oyoe decrementer
encoding address latch
X; ¥ GND +5 —
il 1l il
Addressf
e gy Dat
GEN Contro Staitus) Reset = baufer
F
Vool vy T }

CLK GEN READY RO WRALE &, 5, 10/M HOLD HLDA RESETIN RESETOUT A, 7A, AD_-AD,

microprocessor is an 8-bit processor available as a 40-pin IC package and uses +5 V for power. It
can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit and address bus width is
16-bit, thus it can address 216 = 64 KB of memory. The internal architecture of 8085 is shown in
above figure.

Arithmetic and Logic Unit:

The ALU performs the actual numerical and logical operations such as Addition (ADD),
Subtraction (SUB), AND, OR etc. It uses data from memory and from Accumulator to perform
operations. The results of the arithmetic and logical operations are stored in the accumulator.

Registers :
The 8085 includes six registers, one accumulator and one flag register, as shown in Fig. 3. In

addition, it has two 16-bit registers: stack pointer and program counter. They are briefly
described as follows. The 8085 has six general-purpose registers to store 8-bit data; these are
identified as B, C, D, E, H and L. they can be combined as register pairs - BC, DE and HL to
perform some 16-bit operations. The programmer can use these registers to store or copy data
into the register by using data copy instructions.

S.No. | Name of the Register Quantity Capacity
1. | Accumulator (or) Register A 1 8-bit
2. | Temporary register 1 8-bit
3. | General purpose registers (B, C, D, E, Hand L) 6 8-bit each
4. | Stack pointer (SP) 1 16-bit
5. | Program counter (PC) 1 16-bit
6. | Instruction register 1 8-bit
¥ Incrementer/Decrementer address latch 1 16-bit
8. | Status flags register 1 8-bit

Accumulator:

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit
data and to perform arithmetic and logical operations. The result of an operation is stored in
the accumulator. The accumulator is also identified as register A.

Flag register:

The ALU includes five flip-flops, which are set or reset after an operation according to data
condition of the result in the accumulator and other registers. They are called Zero (2),
Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags. Their bit positions in the

flag register are shown in Fig. 4. The microprocessor uses these flags to test data conditions.

D7 D6 D5 D4 D3 D2 D1 Do
S Z X AC X P X CY

Sign (S) flag: — If the MSB of the result of an operation is 1, this flag is set, otherwise
it is reset.

Zero (Z) flag:— If the result of an instruction is zero, this flag is set, otherwise reset.
Auxiliary Carry (AC) flag:— If there is a carry out of bit 3 and into bit 4 resulting from

the execution of an arithmetic operation, it is set otherwise reset. This flag is used for BCD
operation and is not available to the programmer to change

the sequence of an instruction.

Carry (CY) flag:— If an instruction results in a carry (for addition operation) or borrow
(for subtraction or comparison) out of bit D7, then this flag is set, otherwise reset.

Parity (P) flag:— This flag is set when the result of an operation contains an even
number of 1’s and is reset otherwise.

Program Counter (PC):

This 16-bit register deals with sequencing the execution of instructions. This register is a
memory pointer. The microprocessor uses this register to sequence the execution of the
instructions. The function of the program counter is to point to the memory address from
which the next byte is to be fetched. When a byte is being fetched, the program counter is
automatically incremented by one to point to the next memory location.

Stack Pointer (SP) :

The Stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory
location in R/W memory, called stack. The beginning of the stack is defined by loading 16-bit
address in the stack pointer.

Instruction Register/Decoder:

It is an 8-bit register that temporarily stores the current instruction of a program. Latest
instruction sent here from memory prior to execution. Decoder then takes instruction and
decodes or interprets the instruction. Decoded instruction then passed to next stage.

Control Unit :
Control Generates signals on data bus, address bus and control bus within microprocessor to
carry out the instruction, which has been decoded.

Data Bus: Data bus carries data in binary form between microprocessor and other external
units such as memory. It is used to transmit data i.e. information, results of arithmetic etc
between memory and the microprocessor. Data bus is bidirectional in nature. The data bus
width of 8085 microprocessor is 8-bit i.e. 28 combination of binary digits and are typically
identified as DO — D7. Thus size of the data bus determines what arithmetic can be done. If only
8-bit wide then largest numberis 11111111 (255 in decimal). Therefore, larger numbers have to
be broken down into chunks of 255. This slows microprocessor.

Address Bus: The address bus carries addresses and is one way bus from microprocessor to the
memory or other devices. 8085 microprocessor contain 16-bit address bus and are generally
identified as AO - A15. The higher order address lines (A8 — A15) are unidirectional and the
lower order lines (AO — A7) are multiplexed (time-shared) with the eight data bits (DO — D7) and
hence, they are bidirectional.

Control Bus: Control bus are various lines which have specific functions for coordinating and
controlling microprocessor operations. The control bus carries control signals partly
unidirectional and partly bidirectional. The following control and status signals are used by 8085
processor:

ALE (output): Address Latch Enable is a pulse that is provided when an address appears on the

ADO — AD7 lines, after which it becomes 0.

R'D (active low output): The Read signal indicates that data are being read from the selected I/
O or memory device and that they are available on the data bus.

WR (active low output): The Write signal indicates that data on the data bus are to be written
into a selected memory or 1/0 location.

IO/M(output): It is a signal that distinguished between a memory operation and an 1/O
operation. When |0/ M = 0 it is a memory operation and IO/ M =1 it is an I/O operation.

S1 and SO (output): These are status signals used to specify the type of operation being
performed; they are listed in Table,

S1 SO States
0 1 Write
1 0 Read
1 1 Fetch
8085 pin diagram
I +5V GND
M T4
1 |2 140 “T2
x, {1 o, 40 Ve Serial SID 5. [%y % v
YO soD 4
X,]2 39 [JHOLD ports <€— A,.|28
High ord
RESET OUT |3 38 [IHLDA B addnses bis
soD 4 37 [CLK(OUT) 21
TRAP 6
S
TRAP 6 35 [JREADY £ 5 RST6S 8 AD, M,\,U,ﬁp,exed '\
— = RST55) address/data
RST75 34 [10/M S = >
- - o0 § |N7u> AD, N bus /
RST 65 s 33 [3Js, =
RST55[|9 8085A 32 [IRD READY 35
INTRC]10 31 [OWR _—__HOLD .
RESETIN 36, .
NTA 11 30 [ALE
AD, {12 29 s, 5§ INTA 1
BE Lipa 38 30
AD, {13 28 A, 28 —— E SIS
B = »S,
.]14 27 § 8
AD. A & 5 »S, Control
AD,[]15 26 A, ® 34 »10/M and
. 32 __ status
AD,[]16 25 A, ==»RD signals
31 »WR
AD, |17 24 A,
AD,[]18 23 [JA,
AD, 19 2 A,
Ve C]20 21 [JA,
3] 37

Properties:

Pin Configuration

e Itis a 8-bit microprocessor

RESET OUT CLKOUT

* Manufactured with N-MOS technology

e 40 pin IC package

* It has 16-bit address bus and thus has 216 = 64 KB addressing capability.
* Operate with 3 MHz single-phase clock

e +5Vsingle power supply

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 6. All the
signals are classified into six groups:

* Address bus

» Databus

* Control & status signals

* Power supply and frequency signals
* Externally initiated signals

e Serial I/O signals

Address and Data Buses:

* A8 -A15 (output, 3-state): Most significant eight bits of memory addresses and the
eight bits of the I/O addresses. These lines enter into tri-state high impedance state
during HOLD and HALT modes.

* ADO-AD7 (input/output, 3-state): Lower significant bits of memory addresses and the
eight bits of the 1/0 addresses during first clock cycle. Behaves as data bus during third
and fourth clock cycle. These lines enter into tri-state high impedance state during HOLD
and HALT modes.

Control & Status Signals:
* ALE: Address latch enable
« R'D:Read control signal.
s WR:Write control signal.
« 10/M,S1andSO: Status signals.

Power Supply & Clock Frequency:
* Vcc: +5 V power supply
* Vss: Ground reference
e X1, X2: A crystal having frequency of 6 MHz is connected at these two pins.
* CLK: Clock output

Externally Initiated and Interrupt Signals:

e RESET IN: When the signal on this pin is low, the PC is set to 0, the buses are tristated
and the processor is reset.

e RESET OUT: This signal indicates that the processor is being reset. The signal can
be used to reset other devices.

e READY: When this signal is low, the processor waits for an integral number of

clock cycles until it goes high.

* HOLD: This signal indicates that a peripheral like DMA (direct memory access)
controller is requesting the use of address and data bus.

e HLDA: This signal acknowledges the HOLD request.

e INTR: Interrupt request is a general-purpose interrupt.

e INTA : This is used to acknowledge an interrupt.

e RST7.5,RST 6.5, RST 5,5 —restart interrupt: These are vectored interrupts and
have highest priority than INTR interrupt.

* TRAP: This is a non-maskable interrupt and has the highest priority.

Serial 1/0 Signals:
SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM
instruction.

SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

Difference between SPR & GPR:

GPR SPR

8085 has 6 general purpose registers . All the registers other than gpr are known as
special purpose registers.

General purpose registers can be used either All specif purpose registers has some special
data and address register. functions

Timing and control unit:

The T&C section is a part of CPU and generates timing and control signals for execution
of instructions. This section includes Clock signals, Control signals, Status signals, DMA
signals as also the Reset section. This section controls fetching and decoding operations.
It also generates appropriate control signals for instruction execution as also the signals
required to interface external devices.

e The control and status signals are ALE, RD , W'R, IO/M, S0, S1 and READY.

e Theinterrupt signals are TRAP, RST 7.5, RST 6.5, RST 5.5, INTR. IN,TA is aninterrupt
acknowledgement signal indicating that the processor has acknowledged an INTR
interrupt.

» Serial I/O signals are SID and SOD

* DMAsignals are HOLD and HLDA

* Resetsignalsare RESE'Tegg_ and RESET OUT.

ALE:

Pin 30 of 8085 is the ALE pin which stands for ‘Address Latch Enable’. ALE signal is used

to demultiplex the lower order address bus (ADO — AD7). Pins 12 to 19 of 8085 are ADO — AD7
which is the multiplexed address-data bus. Multiplexing is done to reduce the number of pins of
8085. Lower byte of address (AO — A7) are available from ADO — AD7 (pins 12 to 19) during T1 of
machine cycle. But the lower byte of address (A0 — A7), along with the upper byte A8 — A15
(pins 21 to 28) must be available during T2 and rest of the machine cycle to access memory
location or I/0 ports. Now ALE signal goes high at the beginning of T1 of each machine cycle
and goes low at the end of T1 and remains low during the rest of the machine cycle. This high to
low transition of ALE signal at the end of T1 is used to latch the lower order address byte (AO —
A7) by the latch IC 74LS373, so that the lower byte A0 — A7 is continued to be available till the
end of the machine cycle. The situation is explained in the following figure:

AD, 19 748373
ADI EoDIIE Len Fes A, = Ay
dre (Latch) (Lower byte of address bus,

]
0
8 available from T, state of each
5 G machine cycle)
ALE —
30
ALE signal

DMA:

DMA mode of data transfer is fastest and pins 39 and 38 (HOLD and HLDA) become active
only in this mode.

When DMA is required, the DMA controller IC (8257) sends a 1 to pin 39 of 8085. At

the end of the current instruction cycle of the microprocessor it issues al to pin 38 of

the controller. After this the bus control is totally taken over by the controller.

When 8085 is active and 8257 is idle, then the former is MASTER and the latter is

SLAVE, while the roles of 8085 and 8257 are reversed when 8085 is idle and 8257 becomes
active. mode of data transfer is fastest and pins 39 and 38 (HOLD and HLDA) become active
only in this mode.

When DMA is required, the DMA controller IC (8257) sends a 1 to pin 39 of 8085. At

the end of the current instruction cycle of the microprocessor it issues al to pin 38 of

the controller. After this the bus control is totally taken over by the controller.

When 8085 is active and 8257 is idle, then the former is MASTER and the latter is

SLAVE, while the roles of 8085 and 8257 are reversed when 8085 is idle and 8257 becomes

active.

IO/MsignaI indicates whether I/O or memory operation is being carried out. A high on
this signal indicates 1/O operation while a low indicates memory operation. SO and S1
indicate the type of machine cycle in progress.

RESEITG& It is an input signal which is active when its status is low. When this pin is
low, the following occurs:

* The program counter is set to zero (0000H).

e Interrupt enable and HLDA F/Fs are resetted.

* All the buses are tri-stated.

* Internal registers of 8085 are affected in a random manner.

RESET OUT:
When this signal is high, the processor is being reset. This signal is synchronised to the
processor clock and is used to reset other devices which need resetting

STACK:

Stack is a reserved of memory used to keep track of a program's internal operations, including
functions, return addresses, passed parameters ed parameters, etc. A stack is

usually maintained as a "last in, first out" (LIFO) data s) data structure, so that the last item
added to the structure is the first item used. Sometimes it is useful to have region of memory
for temporary storage, which does not have to be allocated named variables. When we use
subroutines and interrupts it will be essential to have such a storage region. Such region is
called a Stack

The Stack Pointer register will hold the address of the top location of the stack. And the
program counter is a register always it will hold the address of the memory location from where
the next instruction for execution will have to be fetched. The complete programmer's view of
8085 is shown in the following figure

8 bits 8 bits
4> > ¢—>
A | | | | F
B |] | C
D | | | | E
HI | | | L
PC[]
sP[_____ 1]

<«—16 bits —»

SP is a special purpose 16-bit register. It contains a memory address. Suppose SP contents are
FC78H, then the 8085 interprets it as follows

Memory locations FC78H, FC79H, ..., FFFFH are having useful information. In other words, these
locations are treated as filled locations. Memory locations FC77H, FC76H, ..., 0000H are not
having any useful information. In other words, these locations are treated as empty locations.

On a stack, we can perform two operations. PUSH and POP. In case of PUSH operation, the SP
register gets decreased by 1 and new data item used to insert on to the top of the stack. On the
other hand, in case of POP operation, the data item will have to be deleted from the top of the
stack and the SP register will get increased by the value of 1.

Thus, the contents of SP specify the top most useful location in the stack. This is known as
stacktop .In other words, it indicates the memory location with the smallest address having
useful information. This is pictorially represented in the following figure —

FC75H
FC76H
FCTTH T Empty
FCT8H l Full

FCT9H
FCTAH

SP(FC78| ——

Fig. Interpretation of SP contents

8085 Interrupts:

Six signals are associated with interrupt logic. There are five interrupt request pins through
which the 8085 may be interrupted. These are TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR. The
first four interrupts (TRAP, RST 7.5, RST 6.5, RST 5.5) are supported by hardware implemented
vectoring, i.e. the locations of Interrupt Service Routines(ISR) in memory for these interrupts
are fixed and automatic vectoring to the location takes place whenever any of these four
interrupts is recognized. The interrupt service routine locations for these interrupts are as
follows:

Interrupt ISR location

TRAP 24H
RST 7.5 3CH
RST 6.5 34H
RST 5.5 2CH

The last interrupt INTR is a general-purpose interrupt The interrupt request on this line is
acknowledged by the 8085 on the output line. On receiving the acknowledgement, the
interrupting device places on the data bus the address of Interrupt Service Routine (ISR) in the
memory. The microprocessor executes the ISR to service the interrupt. There are two ways by
which the interrupting device can send the ISR address. It can input one byte code of one of the
“RST n” instructions (RST O to RST 7). These are other wise known as software interrrupts . The
microprocessor will execute this instruction to branch to ISR at 8 bit address location. The RST
n is a single byte subroutine call instruction. Another way is to input a 3-byte code for “CALL
addr16” instruction. On receiving this 3-byte code, the microprocessor will execute this
instruction to branch to ISR at addr16.

The vector address for a software interrupt is calculated as follows:
Vector address = interrupt number x 8

For example, the vector address for RST 5 is calculated as

5x 8 =(40)10=(28)n

Vector address for RST 5 is 0028H.

Instruction | Corresponding Vector
HEX code addresses
RST O C7 QoooH
RST 1 CF oooaH
RET 2 D7 oo10H
RST3 DF oo1aH
RST4 ET oo20H
RSTS EF oo2aH
RSTa F7 0030H
RETT FF 0o38H

TRAP interrupt is the non-maskable interrupt for 8085. It means that if an interrupt
comes via TRAP, 8085 will have to recognise the interrupt.

Interrupts INTR, RST 5.5 and RST 6.5 are level-triggered, i.e. a high signal should be present on
these lines when the interrupt is recognized. In other words, if a device sends an interrupt pulse
of short duration on any of these lines, it is possible that this interrupt request is ignored totally
owing to the reason that the interrupt pulse may not be present when these lines are scanned
by the microprocessor for the interrupt request. RST 7.5 is edge-triggered and TRAP is level- as
well as edge-triggered. Both are associated with internal latches which store the interrupt

requests as and when the interrupt signal on these lines goes from low to high. TRAP is
normally reserved for power failure or some other highest priority interrupt. Thus, it will be
desirable to protect this pin from spurious signals. It is because of this reason that TRAP is level
as well as edge-triggered.

The interrupts of 8085 have their priorities fixed—TRAP interrupt has the highest priority,
followed by RST 7.5, RST 6.5, RST 5.5 and lastly INTR.

Interrupt masking:

An interrupt which can be disabled by software means, is called a maskable interrupt. Thus an
interrupt which cannot be masked is an unmaskable interrupt. Various interrupts can be
enabled or disabled selectively by masking. There is an interrupt mask register in the interrupt
control system Various bits of this register are used for enabling or disabling of interrupts. The
first 3 bits—bit 0, bit 1, and bit 2—are devoted to interrupt masks for RST 5.5, RST 6.5 and RST
7.5 interrupts respectively. If any of these bits is set to 1, the particular interrupt is disabled,
otherwise it is enabled. Bit 3 is the overriding bit for bit 0, bit 1, and bit 2. This bit is called the
Mask Set Enable (MSE). Only when this bit is set to 1, the mask bits for interrupts RST 5.5, RST
6.5, and RST 7.5 are taken into consideration. Bit 4 is used to reset the RST 7.5 latch. When this
bit is set to 1, the latch associated. with the RST 7.5 interrupt is reset regardless of whether RST
7.5 is masked or not. Bit 5 is not used. Bit 6 and bit 7 are devoted to serial output; these bits are
discussed under Section 3.2.7 on Serial Input— Output. All the interrupts can also be
reset/disabled through the signal at RESE/TG& the pin.

T T I

—— RST 5.5 MAS
— RST 6.5 MASK
— RST 7.5 MASK

—— MASK SET ENABLE

RESET RST7.5

UNDEFINED

SERIAL OUTPUT ENABLE

b—— SFRIAL OUTPUT DATA

Interrupt mask register.

To mask any interrupt, the user will set the bit pattern in accumulator (ACC) according to his
need and execute the SIM (Set Interrupt Mask) instruction. As an example, if we want to enable
RST 7.5 and RST 5.5 and disable RST 6.5, the bit pattern will be

00011010=1AH

The user will transfer 1AH to ACC and execute the SIM instruction. The user will often wish to
know about the status of the various interrupts, i.e. whether they are enabled and whether any
interrupt is pending on these lines. This is facilitated by the RIM (Read Interrupt Mask)
instruction. This instruction when executed, loads the accumulatorwith a byte—the structure of
which is shown inbelow Figure. Bit 0, bit 1, and bit 2 of this byte indicate interrupt masks set
for interrupts RST 5.5, RST 6.5, and RST 7.5 respectively. Bit 3 shows whether the interrupt
system is enabled or disabled. The next three bits indicate whether any interrupt is pending on
RST 5.5, RST 6.5, and RST 7.5 respectively. Bit7 is reserved for serial input data. The user will
examine the status of various interrupts and then take appropriate decision to mask or unmask
any interrupt.

7 6 5 4 3 2 1 0

~ SID 175 165 (55 IE M75 M65 M55

CONTENT OF INTERRUPT
SID LINE ENABLE

PEMDING INTERRUPT MASK
INTERRUFTS

Microprocessor and Microcontroller

LECTURE NOTES

Department of Electronics and Communication Engineering

BY: ANURAG SETHY (LECTURER)

UGMIT RAYAGADA

UNIT-2

Instruction Word Size in Microprocessor

The 8085 instruction set is classified into 3 categories by considering the length of the
instructions. In 8085, the length is measured in terms of “byte” rather then “word” because

8085 microprocessor has 8-bit data bus. Three types of instruction are: 1-byte instruction, 2-
byte instruction, and 3-byte instruction.

1. One-byte instructions:

In 1-byte instruction, the opcode and the operand of an instruction are represented in
one byte.

Example-1

Mnemonic- MOV B, A
Opcode- MOV

Operand- B, A

Hex Code- 47H

Binary code- 81906 0111

*» Example-2:
Task- Add the contents of accumulator to the contents of register B.

Mnemonic- ADD B
Opcode- ADD
Operand- B
Hex Code- 8@H
Binary code- 1000 0000

2. Two-byte instructions

Two-byte instruction is the type of instruction in which the first 8 bits indicates the

opcode and the next 8 bits indicates the operand.
* Example-1:

Task- Load the hexadecimal data 32H in the accumulator.

Mnemonic- MVI A, 32H
Opcode- MVI

Operand- A, 32H

Hex Code- 3E

32

Binary code- 90011 1110
0011 00106

3. Three-byte instructions
Three-byte instruction is the type of instruction in which the first 8 bits indicates the
opcode and the next two bytes specify the 16-bit address. The low-order address is
represented in second byte and the high-order address is represented in the third byte.

* Example-1:
Task- Load contents of memory 2050H in the accumulator.

Mnemonic- LDA 2856H
Opcode- LDA

Operand- 2058H

Hex Code- 3A

50

20

Binary code- 6011 1010
2101 0009

0010 0008

* Example-2:
Task- Transfer the program sequence to the memory location 2050H.

Mnemonic- JMP 2085H

Opcode- IMP

Operand- 2085H

Hex Code- C3

85

20

Binary code- 1108 0011
1gee @191

0010 06000

8085 Addressing Modes

The process of specifying the data to be operated on by the instruction is called addressing. The
various formats for specifying operands are called addressing modes. The 8085 has the
following five types of addressing:

I. Immediate addressing

II. Memory direct addressing
lll. Register direct addressing
IV. Indirect addressing

V. Implicit addressing

Immediate Addressing:

In this mode, the operand given in the instruction - a byte or word — transfers to the destination
register or memory location.

Ex: MVI A, 9AH

The operand is a part of the instruction.

The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and register. The
memory location address is given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the accumulator.

Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to destination
register.

Ex: MOV B, C

It copies the content of register C to register B.

Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory location.

Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The data is
moved to the accumulator

Implicit Addressing

In this addressing mode the data itself specifies the data to be operated upon.

Ex: CMA

The instruction complements the content of the accumulator. No specific data or operand is
mentioned in the instruction

DATA TRANSFER INSTRUCTIONS

8085 Instruction Set

Opcode

Operand

Description

MOV

Rd, Rs
M, Rs
Rd, M

This instruction copies the
contents of the source

register into the destination
register; the contents of the
source register are not altered.
If one of the operands is a
memory location, its location is
specified by the contents of
the HL registers

Example: MOV B, C or MOV B,M

MVI

Rd, data
M, data

The 8-bit data is stored in the
destination register or
memory. If the operand is a
memory location, its location is
specified by the contents of the
HL registers.

Example: MVI B, 57H or MVI M,
57H

LDA

16-bit address

The contents of a memory
location, specified by a

16-bit address in the operand,
are copied to the accumulator.
The contents of the source are
not altered.

Example: LDA 2034H

LDAX

B/D Reg. pair

The contents of the designated
register pair point to a memory
location. This instruction copies
the contents of that memory
location into the accumulator.
The contents of either the
register pair or the memory

location are not altered.
Example: LDAX B

LXI

Reg. pair, 16-bit data

The instruction loads 16-bit data
in the register pair

designated in the operand.
Example: LXI H, 2034H or LXI H,
XYz

LHLD

16-bit address

The instruction copies the
contents of the memory
location

pointed out by the 16-bit
address into register Land
copies

the contents of the next
memory location into register H.
The

contents of source memory
locations are not altered.
Example: LHLD 2040H

STA

16-bit address

The contents of the accumulator
are copied into the memory
location specified by the
operand. This is a 3-byte
instruction,

the second byte specifies the
low-order address and the third
byte specifies the high-order
address.

Example: STA 4350H

SHLD

16-bit address

The contents of register L are
stored into the memory location
specified by the 16-bit address
in the operand and the contents
of H register are stored into the
next memory location by
incrementing the operand. The
contents of registers HL are

not altered. This is a 3-byte
instruction, the second byte
specifies the low-order address

and the third byte specifies the
high-order address.
Example: SHLD 2470H

STAX

Reg. pair

The contents of the accumulator
are copied into the memory
location specified by the
contents of the operand
(register

pair). The contents of the
accumulator are not altered.
Example: STAX B

XCHG

The contents of register H are
exchanged with the contents of
register D, and the contents of
register L are exchanged with
the contents of register E.
Example: XCHG

SPHL

The instruction loads the
contents of the H and L registers
into

the stack pointer register, the
contents of the H register
provide the high-order address
and the contents of the L
register provide the low-order
address. The contents of the H
and L registers are not altered.
Example: SPHL

XTHL

The contents of the L register
are exchanged with the stack
location pointed out by the
contents of the stack pointer
register. The contents of the H
register are exchanged with
the next stack location (SP+1);
however, the contents of the
stack pointer register are not
altered.

Example: XTHL

PUSH

Reg. pair

The contents of the register pair
designated in the operand are

copied onto the stack in the
following sequence. The stack
pointer register is decremented
and the contents of the
highorder

register (B, D, H, A) are copied
into that location. The

stack pointer register is
decremented again and the
contents of

the low-order register (C, E, L,
flags) are copied to that
location.

Example: PUSH B or PUSH A

POP

POP Reg. pair

The contents of the memory
location pointed out by the
stack

pointer register are copied to
the low-order register (C, E, L,
status flags) of the operand. The
stack pointer is incremented
by 1 and the contents of that
memory location are copied to
the high-order register (B, D, H,
A) of the operand. The stack
pointer register is again
incremented by 1.

Example: POP H or POP A

ouT

8-bit port address

The contents of the accumulator
are copied into the I/0 port
specified by the operand.
Example: OUT F8H

8-bit port address

The contents of the input port
designated in the operand are
read and loaded into the
accumulator.

Example: IN 8CH

ARITHMETIC INSTRUCTIONS
Opcode Operand Description

Add register or memory to accunmlator

ADD R The contents of the operand (register or memory) are
M added to the contents of the accumulator and the result 1s

stored in the accumulator.

If the operand is a memory

location, its location is specified by the contents of the HL
registers. All flags are modified to reflect the result of the

addition.

Example: ADDEB or ADDM

Add register to accunmlator with carry

ADC R The contents of the operand (register or memory) and
M the Carry flag are added to the contents of the accumulator
and the result is stored in the accumulator. If the operand is a
memory location, its location is specified by the contents of
the HL registers. All flags are modified to reflect the result of

the addition.
Example: ADCB or ADC M
Add immediate to accummlator
ADI 8-bit data The 8-bit data (operand) is added to the contents of the

accummulator and the result is stored in the accummlator. All
flags are modified to reflect the result of the addition.

Example: ADI 45H

Add immediate to accummlator with carry

ACT 8-bit data The 8-bit data (operand) and the Carry flag are added to the
contents of the accumulator and the result is stored in the
accummulator. All flags are modified to reflect the result of the

addition.

Example: ACT 45H

Add register pair to H and L registers

DAD FReg pair

The 16-bit contents of the specified register pair are added to
the contents of the HL register and the sum is stored in the
HL register. The contents of the source register pair are not
altered. If the result is larger than 16 bits, the CY flag is set.
No other flags are affected.

Example: DADH

Subfract register or memory from accumulator

SUB K
M

The contents of the operand (register or memory) are
subtracted from the contents of the accumulator, and the result
1s stored in the accumulator. If the operand is a memory
location, its location is specified by the contents of the HL
registers. All flags are modified to reflect the result of the
subtraction.

Example: SUBB or SUB M

Subtract source and borrow from accumulator

SBEB E
M

The contents of the operand (register or memory) and

the Borrow flag are subfracted from the contents of the
accumulator and the result is placed in the accumulator. I
the operand is a memory location, ifts location is specified by
the contents of the HL registers. All flags are modified to
reflect the result of the subtraction.

Example: SBB B or SBE M

Subtract immediate from accunmlator

sUI 8-bit data

The 8-bit data (operand) is subtracted from the contents of the
accumulator and the result is stored in the accummlator. All
flags are modified to reflect the result of the subtraction
Example: SUI 45H

Subtract immediate from accumulator with borrow

SBI 8-bit data

Increment register or memory by 1
INE. R
M

The 8-bit data (operand) and the Borrow flag are subtracted
from the contents of the accumulator and the result is stored
in the accumulator. All flags are modified to reflect the result
of the subtracion.

Example: SBI 45H

The contents of the designated register or memory) are
incremented by 1 and the result is stored in the same place. If
the operand is a memory location, ifs location is specified by
the contents of the HL registers.

Example: INE.B or INE.M

Increment register pair by 1
INX R

Decrement register or memory by 1
DCR R
M

Decrement register pair by 1
DCX E

Decimal adjust accummulator
DAA none

The contents of the designated register pair are incremented
by 1 and the result 1s stored in the same place.
Example: INX H

The contents of the designated register or memory are
decremented by 1 and the result is stored in the same place. If
the operand is a memory location, its location is specified by
the contents of the HL registers.

Example: DCE.B or DCE M

The contents of the designated register pair are decremented
by 1 and the result is stored in the same place.
Example: DCX H

The contents of the accummlator are changed from a binary
value to two 4-bit binary coded decimal (BCD) digits. This is
the only instruction that uses the auxiliary flag to perform the
binary to BCD conversion, and the conversion procedure is
described below. S, Z. AC, P, CY flags are altered to reflect
the results of the operation.

If the value of the low-order 4-bits in the accummulator is
greater than @ or if AC flag is set, the instmuction adds 6 to the
low-order four bits.

If the value of the high-order 4-bits in the accumulator is
greater than 9 or if the Carry flag is set, the instruction adds 6
to the high-order four bits.

Example: DAA

BRANCHING INSTRUCTIONS

Opcode Operand Description
Jump unconditionally
IMP 16-bit address The program sequence is transferred to the memeory location

specified by the 16-bit address given in the operand.
Example: JMP 2034H or IMP XYZ

Jump conditionally
Operand: 16-bit address
The program sequence is transferred to the memeory location
specified by the 16-bit address given in the operand based on

the specified flag of the PSW as described below.
Example: JZ 2034H or JZ XYZ

Opcode Description Flag Status
IC Jump on Carry CY=1
TNC Jump on no Carry CY=0
P Jump on positive 5=0
M Jump on minus 5=1
IZ Jump on zero Z=1
INZ Jump on no zero Z=0
JPE Jump on parity even P=1
JPO Jump on parity odd P=0

Unconditional subroutine call

CAIL 16-bit address The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand. Before
the transfer, the address of the next instruction after CALL
(the contents of the program counter) is pushed onto the staclk.
Example: CALL 2034H or CALL X¥Z

Call conditionally

Operand: 16-bit address

The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand based on
the specified flag of the PSW as described below. Before the
transfer. the address of the next instruction after the call (the
contents of the program counter) is pushed onto the stack.
Example: CZ 2034H or CZXYZ

Crpcode Description Flag Status
CC Call on Carry CY=1
CNC Call on no Carry CY=0
CP Call on positive 5=0
CM Call on minus 5=1
CZ Call on zero Z=1
CNZ Call on no zero Z=0
CPE Call on parity even P=1
CPO Call on parity odd P=0

Feturn from subroufine unconditionally

EET none The program segquence is transferred from the subroutine to
the calling program. The two bytes from the top of the stack
are copied into the program counter. and program execution
begins at the new address.
Example: RET

Feturn from subroufine conditionally

Operand: none
The program segquence is transferred from the subroutine to
the calling program based on the specified flag of the PSW as
described below. The two bytes from the top of the stack are
copied into the program counter. and program execution
begins at the new address.
Example: RZ
Opcode Description Flag Status
RC Retum on Carry CY=1
ENC Retum on no Carry CY=0
EP Retum on positive 5=0
EM Retum on minus 5=1
EZ Retum on zero Z=1
ENZ Retum on no zero Z=10
EPE Retum on paritveven P=1
RPO Return on parity odd P=0

Load program counter with HL contents

PCHL none The contents of registers H and L are copied info the program
counter. The contents of H are placed as the high-order byte
and the contents of L as the low-order byte.
Example: PCHL

Restart

RST 0-7 The RST instruction is equivalent to a 1-byte call instruction
to one of eight memory locations depending upon the number.
The instructions are generally used in conjunction with
interrupts and inserted wsing external hardware. However
these can be used as software instructions in a program to
transfer program execution to one of the eight locations. The

addresses are:

Instmuction Eestart Address
RSTO 0000H
R5T1 0008H
RST 2 0010H
R&T 3 0018H
EST 4 0020H
R&T 5 0028H
REST 6 0030H
R8T 7 0038H

The 8085 has four additional inferrupts and these interrupts
generate BST instructions mternally and thus do nof require
any external hardware. These instructions and their Restart

addresses are:
Interrupt Festart Address
TRAP 0024H
RST 55 002CH
RST 6.5 0034H

RST 7.5 003CH

LOGICAL INSTRUCTIONS

Opcode Operand Description
Compare register or memory with accumulator
CMP R The contents of the operand (register or memory) are
M compared with the contents of the accumulator. Both

contents are preserved . The result of the comparison is
shown by setting the flags of the PSW as follows:

if (A) < (reg/mem): carry flag is set

if (A) = (reg/mem): zero flag is set

if (A) = (reg/mem): carry and zero flags are reset

Example: CMPB or CMPM

Compare immediate with accumulator

CPI 8-bit data The second byte (8-bit data) is compared with the contents of
the accumulator. The walues being compared remain
unchanged. The result of the comparison is shown by setting
the flags of the PSW as follows:
if (A) < data: carry flag is set
if (A) = data: zero flag is set
if (A) = data: carry and zero flags are reset
Example: CPI 89H

Logical AND register or memory with accumulator
ANA R The contents of the accumulator are logically ANDed with
M the contents of the operand (register or memory), and the

result is placed in the accumulator. If the operand is a
memory location, its address 1s specified by the contents of
HL registers. S, Z. P are modified to reflect the result of the
operation. CY is reset. AC 1s sef.
Example: ANABor ANAM

Logical AND immediate with accunmlator

ANI 8-bit data The contents of the accummlator are logically ANDed with the
8-bit data (operand) and the result is placed in the
accumulator. S, Z. P are modified to reflect the result of the
operation. CY isreset. AC is sef.
Example: ANI86H

Exclusive OF register or memeory with accummlator
XRA R The contents of the accumulator are Exclusive OFed with
M the contents of the operand (register or memeory). and the

result is placed in the accummulator. If the operand is a
memory location, its address is specified by the contents of
HL registers. S, Z. P are modified to reflect the result of the
operation. CY and AC are reset.
Example: XFA B or ZRA M

Exclusive OF. immediate with accumulator

XERI 8-bit data The contents of the accumulator are Exclusive ORed with the
8-bit data (operand) and the result is placed in the
accumulator. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: XRI 86H

Logical OF register or memory with accumulaotr
OFRA E The contents of the accumulator are logically ORed with
M the contents of the operand (register or memory). and the

result is placed in the accummlator. If the operand is a
memeory location, its address is specified by the contents of
HL registers. 5, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: OFA B or ORA M

Logical OF immediate with accumulator

ORI 8-bit data The contents of the accummlator are logically OFed with the
8-bit data (operand) and the result is placed in the
accumulator. 5. Z. P are modified to reflect the result of the
operation. CY and AC are reset.
Example: ORI 86H

Fotate accummulator left

RIC none Each binary bit of the accumulator 1s rotated left by one
posifion. Bit D7 15 placed in the position of D as well as in
the Carry flag. CY is modified according to bit D7. 5, Z, P,
AC are not affected.
Example: RL.C

Rotate accumulator right

RRC none Each binary bit of the accummulator is rotated right by one

posifion. Bit Dy is placed in the position of D7 as well as in
the Carry flag. CY is modified according to bit D. 5, Z, P,

AC are not affected.
Example: RRC

Rotate accumulator left through carry

RAL none Each binary bit of the accumulator is rotated left by one
position through the Carry flag. Bit D7 15 placed in the Carry
flag, and the Carry flag is placed in the least significant
position Dy, CY is modified according to it Dy, 5, Z. P, AC
are not affected.
Example: FAL

Fotate accunmlator nght through carry

FAR none

Complement accumulator
CMA none

Complement carry
CMC none

Set Carry
STC none

CONTROL INSTRUCTIONS

Opcode Operand

No operation
NOP none

Halt and enter wait state
HLT none

Disable intermipts
DI none

Enable intermpts
El none

Each binary bit of the accumulator is rotated right by one
position through the Carry flag. Bit D 15 placed in the Carry
flag, and the Carry flag is placed in the most significant
position D7. CY is modified according to it Dy, 5, Z, P, AC
are not affected.
Example: RAR

The contents of the accumulator are complemented. No flags
are affected.
Example: CMA

The Carry flag is complemented. No other flags are affected.
Example: CMC

The Carry flag is set to 1. No other flags are affected.
Example: STC

Description

No operation is performed. The instruction is fetched and
decoded. However no operation is executed.
Example: NOP

The CPU finishes executing the current instruction and halts
any further execution. An intermupt or reset is necessary fo
exit from the halt state.

Example: HLT

The interrupt enable flip-flop is reset and all the interrupts
except the TR AP are disabled. No flags are affected.
Example: DI

The interrupt enable flip-flop is set and all infermupts are
enabled. Mo flags are affected. After a system reset or the
acknowledgement of an interrupt, the intermupt enable flip-
flop is reset, thus disabling the interrupts. This instruction is
necessary to reenable the intermupts (except TEAP).

Example: EI

Read infermipt mask

RIM none This is a multipurpose instruction used to read the status of
interrupts 7.3, 6.3, 3.5 and read serial data input bit. The
instruction loads eight bits in the accumulator with the
following interpretations.
Example: RIM

D D Dy Dy Dy Dy D DIy
[SID[17 [16 | 15 [IE [7.5]65]5.5]

L1 | L1 |
Seral input J l ‘ Interrupt
data bit masked if
bit = 1
Interrupes L Interrupt enable
pending if flip-flop is sci
bit = 1 if bit = 1
Set interrupt mask
SIM none This 15 a multipurpose mstruction and vsed to implement the
8085 interrupts 7.5, 6.3, 3.5, and serial data oufput. The
instruction interprets the accunmlator confents as follows.
Example: 5IM
3 D, Dy [} 1 Dy 2] [y
[S0D | SDE | XxX | R7.5 | MSE | M7.5 [M6.5 [M5.5 |
| | [L1 |
Serial output data ~— Reset R7.5 Musks imermepts
i =1 | if hits = 1
Serial data enable «—I Mlask sel
| = Enahle enable it <
1 = Dizsable D=1

[00— Serial Output Data: Bit [); of the accumulator is latched into the SO0 cutpat
line and made available to a serigl peripheral i bit Iy, = 1.

T SDE — Serial Data Enable: 1f this bit = 1, it enables the serial output. To implement
serial output, this bit needs to be enabled,

O XXX —Don't Care

[R7.5—Reset RST 7.5 If this bat = 1. RST 7.5 fip-flop is reser. This is an additional
control to reset RST 7.5,

71 MSE — Mask Set Enable: If this hit is high, it enables the functions of bits D2, T, Dy,
This is & master control over all the interrupt masking bits, If this bit is low, bits D,
[, and Dy, do not have any effect on the masks.

O MTS5——0y = 0, RET 7.5 is enabled

= |, RST 7.5 is masked or disabled.

OOMAES—D, = 0, RST 6.5 is enabled.
= |, RST 6.5 is masked or disabled.
O M550, = 0, RS5T 5.5 is enabled.

= |, RST 5.5 is masked or disabled

UNIT-3

Unit-5

8086 microprocessor

Register Organization of 8086:

General purpose registers: The 8086 microprocessor has a total of fourteen registers that are
accessible to the programmer. It is divided into four groups. They are:

* Four General purpose registers

* Four Index/Pointer registers

* Four Segment registers

e Two Other register

Genceral Purpose Registers

Accumulator AX - : Multiply, divide, /O

Base BX Pointer to base addresss (data)
Count CX Count for loops, shifts

Data DX Multiply. divide, IO

Accumulator register consists of two 8-bit registers AL and AH, which can be combined together
and used as a 16-bit register AX. AL in this case contains the low order byte of the word, and AH
contains the high-order byte. Accumulator can be used for 1/O operations and string

manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together and
used as a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH
contains the high-order byte. BX register usually contains a data pointer used for based, based

indexed or register indirect addressing.

Count register consists of two 8-bit registers CL and CH, which can be combined together and
used as a 16-bit register CX. When combined, CL register contains the low order byte of the
word, and CH contains the high-order byte. Count register can be used in Loop, shift/rotate
instructions and as a counter in string manipulation.

Data register consists of two 8-bit registers DL and DH, which can be combined together and
used as a 16-bit register DX. When combined, DL register contains the low order byte of the
word, and DH contains the high-order byte. Data register can be used as a port number in I/O
operations. In integer 32-bit multiply and divide instruction the DX register contains high-order
word of the initial or resulting number.

Index or Pointer Registers
These registers can also be called as Special Purpose registers.

_Pointer and Index Registers

1 0
Stack Pointer Sp Pointer to top of stack
Base Pointer BP Pointer to base address (stack)
Source Index SI Source string/index pointer
Destination Index DI Destination string/index pointer
15 0

Stack Pointer (SP) is a 16-bit register pointing to program stack, i.e. it is used to hold the
address of the top of stack. The stack is maintained as a LIFO with its bottom at the start of the
stack segment (specified by the SS segment register).Unlike the SP register, the BP can be used
to specify the offset of other program segments. Base Pointer (BP) is a 16-bit register pointing
to data in stack segment. It is usually used by subroutines to locate variables that were passed
on the stack by a calling program. BP register is usually used for based, based indexed or
register indirect addressing. Source Index (Sl) is a 16-bit register. Sl is used for indexed, based
indexed and register indirect addressing, as well as a source data address in string manipulation
instructions. Used in conjunction with the DS register to point to data locations in the data
segment. Destination Index (Dl) is a 16-bit register. Used in conjunction with the ES register in
string operations. Dl is used for indexed, based indexed and register indirect addressing, as well
as a destination data address in string manipulation instructions. In short, Destination Index and
SI Source Index registers are used to hold address.

Segment Registers
Most of the registers contain data/instruction offsets within 64 KB memory segment. There are
four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1
MB of processor memory these 4 segments are located the processor uses four segment
registers.

Segment Registers

Code Segment CS
Data Segment DS
Stack Segment SS
Extra Segment ES

Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor
instructions. The processor uses CS segment for all accesses to instructions referenced by
instruction pointer (IP) register. CS register cannot be changed directly. The CS register is
automatically updated during far jump, far call and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack.
By default, the processor assumes that all data referenced by the stack pointer (SP) and base

pointer (BP) registers is located in the stack segment. SS register can be changed directly using
POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program data.
By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX)
and index register (Sl, DI) is located in the data segment. DS register can be changed directly
using POP and LDS instructions.

Extra segment (ES) used to hold the starting address of Extra segment. Extra segment is
provided for programs that need to access a second data segment. Segment registers cannot be
used in arithmetic operations.

Other Registers
Flags Flags

Instruction Pointer IP

Instruction Pointer (IP) is a 16-bit register. This is a crucially important register which is used to
control which instruction the CPU executes. The IP, or program counter, is used to store the
memory location of the next instruction to be executed. The CPU checks the program counter
to ascertain which instruction to carry out next. It then updates the program counter to point to
the next instruction. Thus the program counter will always point to the next instruction to be
executed.

Flag Register contains a group of status bits called flags that indicate the status of the CPU or
the result of arithmetic operations. There are two types of flags:

1. The status flags which reflect the result of executing an instruction. The programmer cannot
set/reset these flags directly.

2. The control flags enable or disable certain CPU operations. The programmer can set/reset
these bits to control the CPU's operation.

Nine individual bits of the status register are used as control flags (3 of them) and status flags (6
of them).The remaining 7 are not used.

A flag can only take on the values 0 and 1. We say a flag is set if it has the value 1.The status
flags are used to record specific characteristics of arithmetic and of logical instructions.

Control Flags: There are three control flags
1. The Direction Flag (D): Affects the direction of moving data blocks by such instructions as

MOVS, CMPS and SCAS. The flag values are 0 = up and 1 = down and can be set/reset by the
STD (set D) and CLD (clear D) instructions.

2. The Interrupt Flag (I): Dictates whether or not system interrupts can occur. Interrupts are
actions initiated by hardware block such as input devices that will interrupt the normal
execution of programs. The flag values are 0 = disable interrupts or 1 = enable interrupts and
can be manipulated by the CLI (clear 1) and STI (set 1) instructions.

3. The Trap Flag (T): Determines whether or not the CPU is halted after the execution of each
instruction. When this flag is set (i.e. = 1), the programmer can single step through his program
to debug any errors. When this flag = 0 this feature is off. This flag can be set by the INT 3
instruction.

15 14 14 12 11 i § k] v L7 5 4 3 2 1 o -=— Bit no.

(= T=T= 1= Jor[or[F [Tesr]ze] = [Ae] = [Pr] = [cF] stanss repister

| 9 b & 9 b ' |
] |

. IS
| = £

i t Razerved bils, mommmally O
|

i car!}.
Parity

y
|
|
|

== Apalicry carny

Tarn

Sign

Trap

Imterrupt enable‘disable

- Driresclian

el

Status Flags: There are six status flags

1. The Carry Flag (C): This flag is set when the result of an unsigned arithmetic operation is too
large to fit in the destination register. This happens when there is an end carry in an addition
operation or there an end borrows in a subtraction operation. A value of 1 = carry and 0 = no
carry.

2. The Overflow Flag (O): This flag is set when the result of a signed arithmetic operation is too
large to fit in the destination register (i.e. when an overflow occurs). Overflow can occur when
adding two numbers with the same sign (i.e. both positive or both negative). A value of 1 =
overflow and 0 = no overflow.

3. The Sign Flag (S): This flag is set when the result of an arithmetic or logic operation is
negative. This flag is a copy of the MSB of the result (i.e. the sign bit). A value of 1 means
negative and 0 = positive.

4. The Zero Flag (2): This flag is set when the result of an arithmetic or logic operation is equal
to zero. A value of 1 means the result is zero and a value of 0 means the result is not zero.

5. The Auxiliary Carry Flag (A): This flag is set when an operation causes a carry from bit 3 to bit
4 (or a borrow from bit 4 to bit 3) of an operand. A value of 1 = carry and 0 = no carry.

6. The Parity Flag (P): This flags reflects the number of 1s in the result of an operation. If the
number of 1s is even its value = 1 and if the number of 1s is odd then its value = 0.

Architecture of 8086:

8086 has two blocks Bus Interface Unit (BIU) and Execution Unit (EU).

The BIU performs all bus operations such as instruction fetching, reading and writing operands
for memory and calculating the addresses of the memory operands. The instruction bytes are
transferred to the instruction queue.

EU executes instructions from the instruction system byte queue.

Both units operate asynchronously to give the 8086 an overlapping instruction fetch and
execution mechanism which is called as Pipelining. This results in efficient use of the system bus
and system performance.

BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.

EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag register.

P~ .
4 Memory)
_ inteface

.».’"I\
E BIU T 3 L :
i { <2 |
1 \ |
E —g——— Inatruction i
: 4 stream byte E
' p 3 queue :
! B-bus 2 :
; 1 :
: 1 s !
i Control system !
' EU S !
e 3 5 Ay |
: BH BL 7 |
E — B_{ 1 8: \ Arithmetic logic unit / :
. SP S T !
: B8P l ' 5 :
i] v v |
! DI i Operands !
i i _'—%iijgj?{”___J'w f,— |

Intel 8086 internal architecture

Bus Interface Unit:
1. It provides a full 16 bit bidirectional data bus and 20 bit address bus.
2. The bus interface unit is responsible for performing all external bus operations.

Specifically it has the following functions:

3.

4.

10.

11.

12.

13.

Instruction fetch Instruction queuing, Operand fetch and storage, Address relocation
and Bus control.

The BIU uses a mechanism known as an instruction stream queue to implement pipeline
architecture.

This queue permits prefetch of up to six bytes of instruction code. When ever the queue
of the BIU is not full, it has room for at least two more bytes and at the same time the
EU is not requesting it to read or write operands from memory, the BIU is free to look
ahead in the program by prefetching the next sequential instruction.

These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the
BIU fetches two instruction bytes in a single memory cycle.

After a byte is loaded at the input end of the queue, it automatically shifts up through
the FIFO to the empty location nearest the output.

The EU accesses the queue from the output end. It reads one instruction byte after the
other from the output of the queue. If the queue is full and the EU is not requesting
access to operand in memory.

These intervals of no bus activity, which may occur between bus cycles are known as
Idle state.

If the BIU is already in the process of fetching an instruction when the EU request it to
read or write operands from memory or I/0, the BIU first completes the instruction
fetch bus cycle before initiating the operand read / write cycle.

The BIU also contains a dedicated adder which is used to generate the 20bit physical
address that is output on the address bus. This address is formed by adding an
appended 16 bit segment address and a 16 bit offset address.

For example: The physical address of the next instruction to be fetched is formed by
combining the current contents of the code segment CS register and the current
contents of the instruction pointer IP register.

The BIU is also responsible for generating bus control signals such as those for memory
read or write and I/O read or write.

Execution Unit:

1.
2.

The Execution unit is responsible for decoding and executing all instructions.

The EU extracts instructions from the top of the queue in the BIU, decodes them,
generates operands if necessary, passes them to the BIU and requests it to perform the
read or write bus cycles to memory or I/O and perform the operation specified by the
instruction on the operands.

During the execution of the instruction, the EU tests the status and control flags and
updates them based on the results of executing the instruction.

If the queue is empty, the EU waits for the next instruction byte to be fetched and
shifted to top of the queue.

When the EU executes a branch or jump instruction, it transfers control to a location
corresponding to another set of sequential instructions.

Whenever this happens, the BIU automatically resets the queue and then begins to
fetch instructions from this new location to refill the queue.

General Bus Operation

1.

The 8086 has a combined address and data bus commonly referred as a time
multiplexed address and data bus.

The main reason behind multiplexing address and data over the same pins is the
maximum utilization of processor pins and it facilitates the use of 40 pin standard
DIP package.

The bus can be demultiplexed using a few latches and transceivers, when ever
required.

Basically, all the processor bus cycles consist of at least four clock cycles. These are
referred to as T1, T2, T3, and T4. The address is transmitted by the processor during
T1. It is present on the bus only for one cycle.

The negative edge of this ALE pulse is used to separate the address and the data or
status information. In maximum mode, the status lines SO, S1 and S2 are used to
indicate the type of operation.

Status bits S3 to S7 are multiplexed with higher order address bits and the BHE
signal. Address is valid during T1 while status bits S3 to S7 are valid during T2
through T4.

Memory read (‘}‘(‘164+—'\EE‘I]10!'}" write cycle—p)
' T Tl o1l 1T ol T ToTl T
ol
ae [\ /N S\

=\

D AjgAg S-S, Ao Ay S-
Add/stat X X X X X
! BHE Bus reserve BHE
Add/data X K TorDataln X < X DataOut Dis—-Dp)¢
L Ag-Ags ! Dys-Dy Ap-Ajs Dys-Dy
RD/INTA | \ /
! — : Ready
READY \ | / Ready ' \ /*
— ! a 1
DITR Wait | Wait
: ./ \
- | 1
DEN | \ \ /7
o : /
WR 4—Memory access time—>,

P
.

Maximum mode:
1. Inthe maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.
2. Inthis mode, the processor derives the status signal S2, S1, SO. Another chip called bus
controller derives the control signal using this status information.
3. Inthe maximum mode, there may be more than one microprocessor in the system
configuration.
Minimum mode:
1. In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum
mode by strapping its MN/MX pin to logic 1.
2. Inthis mode, all the control signals are given out by the microprocessor chip itself.
3. There s a single microprocessor in the minimum mode system.

Pin Diagram of 8086 and Pin description of 8086:

Pin Diagram of 8086

GND ' 1 40 ’ Ver
AD,, +—, 30 [T ADx
AD,, 3 3/ 4,5
Ay ¢ 4 37 A5
AD, *+— 5§ 36 » AulS
Ap, %6 35 [ApS .
an, 7 _ 34 —*BHE/5
AD, <+ § 8086 33 " MNMX
AT e . —
AD‘ 10 31— RQ/GT, (HOLD)
: RQ/GT,
AD, *+— 3 an —= B ({ HLDA)
2 T LOCK (WR) _
AD; - 13 18 —» 5, (M/10)
AD: 14 37 — 5, (DT/R)
Al «— 15 2 —* 5, (DEN)
Ay —— g 25 *()5, [(ALE}
o0t | P E— 17 24 —» Q5 (INTA)
INTR *+— 13 13 |——p TEST
- - .q_ q
LK 1 . S N, READY
GND &— 20 21 —PRESET

The Microprocessor 8086 is a 16-bit CPU available in different clock rates and packaged
in a 40 pin CERDIP or plastic package.
The 8086 operates in single processor or multiprocessor configuration to achieve high
performance. The pins serve a particular function in minimum mode (single processor
mode) and other function in maximum mode configuration (multiprocessor mode).
The 8086 signals can be categorized in three groups.

* Thefirst are the signal having common functions in minimum as well as

maximum mode.

* The second are the signals which have special functions for minimum mode

* The third are the signals having special functions for maximum mode.
The following signal descriptions are common for both modes.

e AD15-ADO: These are the time multiplexed memory I/O address and data lines.
* Address remains on the lines during T1 state, while the data is available on the
data bus during T2, T3, Tw and T4. These lines are active high and float to a
tristate during interrupt acknowledge and local bus hold acknowledge cycles.
A19/S6, A18/S5, A17/S4, and A16/S3: These are the time multiplexed address and
status lines.
* During T1 these are the most significant address lines for memory operations.
» During |/O operations, these lines are low.
e During memory or I/O operations, status information is available on those lines
for T2, T3, Tw and T4.

» The status of the interrupt enable flag bit is updated at the beginning of each
clock cycle.

* The S4 and S3 combine indicate which segment registers is presently being used
for memory accesses as in below figure

* These lines float to tri-state off during the local bus hold acknowledge.

* The status line S6 is always low. The address bit is separated from the status bit
using latches controlled by the ALE signal.

34 |53 Indication

oo Alternate Data

o |1 Stack

1| o Code 0r None

1|1 Data

oo Whole word

o |1 TUpper byte from or to even address
1| o Lower byte from or to even address

6. BHE/S7: The bus high enable is used to indicate the transfer of data over the higher
order (D15-D8) data bus as shown in table. It goes low for the data transfer over D15-D8
and is used to derive chip selects of odd address memory bank or peripherals. BHE is
low during T1 for read, write and interrupt acknowledge cycles, whenever a byte is to be
transferred on higher byte of data bus. The status information is available during T2, T3
and T4. The signal is active low and tristated during hold. It is low during T1 for the first
pulse of the interrupt acknowledge cycle.

7. RD—Read: This signal on low indicates the peripheral that the processor is performing
memory or |/O read operation. RD is active low and shows the state for T2, T3, Tw of
any read cycle. The signal remains tristated during the hold acknowledge.

8. READY: This is the acknowledgement from the slow device or memory that they have
completed the data transfer. The signal made available by the devices is synchronized
by the 8284A clock generator to provide ready input to the 8086. the signal is active
high.

9. INTR-Interrupt Request: This is a triggered input. This is sampled during the last clock
cycles of each instruction to determine the availability of the request. If any interrupt
request is pending, the processor enters the interrupt acknowledge cycle. This can be
internally masked by resulting the interrupt enable flag. This signal is active high and
internally synchronized.

10. TEST: This input is examined by a “WAIT’ instruction. If the TEST pin goes low, execution
will continue, else the processor remains in an idle state. The input is synchronized
internally during each clock cycle on leading edge of clock.

11. CLK- Clock Input: The clock input provides the basic timing for processor operation and

bus control activity. It's an asymmetric square wave with 33% duty cycle.

Signal Groups of 8086

Ve GND

Ay -ALS, Ay/Sy -AWS

R
INTR ————————» >
oy l//
N
I 14\‘ ADDRESS 'DATA BUS
INTERRLPT 1
TEST INTERFACE N\
L > S Dy - D
DN E— P
NMI > 8436 » ALE
NPT
RESET————— |y BHE/S
N 0 T
MEMORY
o N))
R
HOLD DMA CONTROLS D
INTERFACE i
HLDA < * WE
Ve —_, —
DEN
MODE
ALY VX SELECY I el

CLK

The following pin functions are for the minimum mode operation of 8086.

1.

M/I0 — Memory/IO: This is a status line logically equivalent to S2 in maximum mode.
When it is low, it indicates the CPU is having an I/O operation, and when it is high, it
indicates that the CPU is having a memory operation. This line becomes active high in
the previous T4 and remains active till final T4 of the current cycle. It is tristated during
local bus “hold acknowledge “.

INTA — Interrupt Acknowledge: This signal is used as a read strobe for interrupt
acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.
ALE — Address Latch Enable: This output signal indicates the availability of the valid
address on the address/data lines, and is connected to latch enable input of latches.
This signal is active high and is never tristated.

DT/R — Data Transmit/Receive: This output is used to decide the direction of data flow
through the transceivers (bidirectional buffers). When the processor sends out data,
this signal is high and when the processor is receiving data, this signal is low.

DEN — Data Enable: This signal indicates the availability of valid data over the
address/data lines. It is used to enable the transceivers (bidirectional buffers) to
separate the data from the multiplexed address/data signal. It is active from the middle
of T2 until the middle of T4. This is tristated during ‘hold acknowledge’ cycle.

HOLD, HLDA- Acknowledge: When the HOLD line goes high; it indicates to the processor
that another master is requesting the bus access. The processor, after receiving the
HOLD request, issues the hold acknowledge signal on HLDA pin, in the middle of the
next clock cycle after completing the current bus cycle.

At the same time, the processor floats the local bus and control lines. When the
processor detects the HOLD line low, it lowers the HLDA signal. HOLD is an

asynchronous input, and is should be externally synchronized. If the DMA request is
made while the CPU is performing a memory or I/O cycle, it will release the local bus
during T4 provided

* Therequest occurs on or before T2 state of the current cycle.

* The current cycle is not operating over the lower byte of a word.

* The current cycle is not the first acknowledge of an interrupt acknowledge

sequence.
* Alockinstruction is not being executed.
The following pin functions are applicable for maximum mode operation of 8086:

1. S2,S1, and SO — Status Lines: These are the status lines which reflect the type of
operation, being carried out by the processor. These become activity during T4 of the
previous cycle and active during T1 and T2 of the current bus cycles.

2. LOCK: This output pin indicates that other system bus master will be prevented from
gaining the system bus, while the LOCK signal is low. The LOCK signal is activated by the
‘LOCK’ prefix instruction and remains active until the completion of the next instruction.
When the CPU is executing a critical instruction which requires the system bus, the LOCK
prefix instruction ensures that other processors connected in the system will not gain
the control of the bus.

3. The 8086, while executing the prefixed instruction, asserts the bus lock signal output,
which may be connected to an external bus controller. By prefetching the instruction,
there is a considerable speeding up in instruction execution in 8086. This is known as
instruction pipelining.

S S S0 Indication
Interen pt Ackonowled e
i i i Fead [0 poxt
=] 1 (=] Write LAl port
=] 1 E S Halt
| o (=} Code AcceEs
Road Memory
1 1 (=] Worite Memoery
E S 1 E S Foassive

At the starting the CS: IP is loaded with the required address from which the execution is to be
started. Initially, the queue will be empty and the microprocessor starts a fetch operation to
bring one byte (the first byte) of instruction code, if the CS: IP address is odd or two bytes at a
time, if the CS: IP address is even. The first byte is a complete opcode in case of some
instruction (one byte opcode instruction.

The first byte is a complete opcode in case of some instruction (one byte opcode instruction)
and is a part of opcode, in case of some instructions (two byte opcode instructions), the
remaining part of code lie in second byte.

The second byte is then decoded in continuation with the first byte to decide the instruction
length and the number of subsequent bytes to be treated as instruction data. The queue is
updated after every byte is read from the queue but the fetch cycle is initiated by BIU only if at
least two bytes of the queue are empty and the EU may be concurrently executing the fetched
instructions.

The next byte after the instruction is completed is again the first opcode byte of the next
instruction. A similar procedure is repeated till the complete execution of the program. The
fetch operation of the next instruction is overlapped with the execution of the current
instruction. As in the architecture, there are two separate units, namely Execution unit and Bus
interface unit.

While the execution unit is busy in executing an instruction, after it is completely decoded, the
bus interface unit may be fetching the bytes of the next instruction from memory, depending
upon the queue status.

Q81 | QSo | Indication

n a Mo Operation

o 1 First Byte of the opeode from the quene
1 e Empty Quenas

T2 Suhsequent Byte from the Quens

RQ/GTO, RQ/GT1 — Request/Grant: These pins are used by the other local bus master
in maximum mode, to force the processor to release the local bus at the end of the processor
current bus cycle.

Each of the pin is bidirectional with RQ/GTO0 having higher priority than RQ/GT1. RQ/GT pins
have internal pull-up resistors and may be left unconnected. Request/Grant sequence is as
follows.

1. A pulse of one clock wide from another bus master requests the bus access to 8086.

2. During T4(current) or T1(next) clock cycle, a pulse one clock wide from 8086 to the
requesting master, indicates that the 8086 has allowed the local bus to float and that it
will enter the ‘hold acknowledge’ state at next cycle. The CPU bus interface unit is likely
to be disconnected from the local bus of the system.

3. Aone clock wide pulse from another master indicates to the 8086 that the hold request
is about to end and the 8086 may regain control of the local bus at the next clock cycle.
Thus each master to master exchange of the local bus is a sequence of 3 pulses. There
must be at least one dead clock cycle after each bus exchange. The request and grant
pulses are active low. For the bus request those are received while 8086 is performing
memory or 1/0 cycle, the granting of the bus is governed by the rules as in case of HOLD
and HLDA in minimum mode.

Werite Cycle Timing Diagram for Minimum Mode:
The working of the minimum mode configuration system can be better described in terms of
the timing diagrams rather than qualitatively describing the operations.

* The opcode fetch and read cycles are similar. Hence the timing diagram can be
categorized in two parts, the first is the timing diagram for read cycle and the second is
the timing diagram for write cycle.

* The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and
also M /10 signal. During the negative going edge of this signal, the valid address is

latched on the local bus.

L L I, iy I, T,
Clk u | |J L
ALE [
| , ; S
ADD / STATUS FEE - _11.5}: 8- 8 \,s\
ADD/DATA) Ai-Ag | vValiddataDys D, W
WR —‘H 7
F
DEN \ f
\ /
— [\
DI/R \

Write Cycle Timing Diagram for Minimum Mode

The BHE and AO signals address low, high or both bytes. From T1 to T4, the M/10 signal
indicates a memory or |/O operation.

At T2, the address is removed from the local bus and is sent to the output. The bus is
then tristated. The read (RD) control signal is also activated in T2.

The read (RD) signal causes the address device to enable its data bus drivers. After RD
goes low, the valid data is available on the data bus. The addressed device will drive the
READY line high. When the processor returns the read signal to high level, the addressed
device will again tristate its bus drivers.

A write cycle also begins with the assertion of ALE and the emission of the address. The
M/I0 signal is again asserted to indicate a memory or I/O operation. In T2, after sending
the address in T1, the processor sends the data to be written to the addressed location.
The data remains on the bus until middle of T4 state. The WR becomes active at the
beginning of T2 (unlike RD is somewhat delayed in T2 to provide time for floating).

The BHE and AO signals are used to select the proper byte or bytes of memory or I/O
word to be read or write.

P) IS I DA (R -) Y

HOLD

HLDA

Bus Request and
Bus Grant Timings in Mimmmum Mode System

* Hold Response sequence: The HOLD pin is checked at leading edge of each clock pulse. If
it is received active by the processor before T4 of the previous cycle or during T1 state of
the current cycle, the CPU activates HLDA in the next clock cycle and for succeeding bus
cycles, the bus will be given to another requesting master.

» The control of the bus is not regained by the processor until the requesting master does
not drop the HOLD pin low. When the request is dropped by the requesting master, the
HLDA is dropped by the processor at the trailing edge of the next clock.

Maximum Mode 8086 System

1. Inthe maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

2. Inthis mode, the processor derives the status signal S2, S1, SO. Another chip called bus
controller derives the control signal using this status information.

3. Inthe maximum mode, there may be more than one microprocessor in the system
configuration.

4. The components in the system are same as in the minimum mode system.

5. The basic function of the bus controller chip IC8288 is to derive control signals like RD
and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the
processor on the status lines.

6. The bus controller chip has input lines S2, S1, SO and CLK. These inputs to 8288 are
driven by CPU.

7. It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC.
The AEN, I0B and CEN pins are especially useful for multiprocessor systems.

8. AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of
the MCE/PDEN output depends upon the status of the OB pin.

9. If I0Bis grounded, it acts as master cascade enable to control cascade 8259A, else it
acts as peripheral data enable used in the multiple bus configurations.

10. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or
to an interrupting device.

11. IORC, IOWC are I/O read command and 1/O write command signals respectively.

12. These signals enable an 10 interface to read or write the data from or to the address
port.

13. The MRDC, MWTC are memory read command and memory write command signals
respectively and may be used as memory read or write signals.

14. All these command signals instructs the memory to accept or send data from or to the
bus.

15. For both of these write command signals, the advanced signals namely AIOWC and
AMWTC are available.

16. Here the only difference between in timing diagram between minimum mode and
maximum mode is the status signals used and the available control and advanced
command signals.

17. RO, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as
on the ALE and apply a required signal to its DT / R pin during T1.

18.In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate
MRDC or IORC. These signals are activated until T4. For an output, the AMWC or AIOWC
is activated from T2 to T4 and MWTC or IOWC is activated from T3 to T4.

19. The status bit SO to S2 remains active until T3 and become passive during T3 and T4.

20. If reader input is not activated before T3, wait state will be inserted between T3 and T4.

— R, l A
ROY Generator | 5 = MRDC
Reset Clk RDYI S s28s et Al
S, Bus |— IORC
Controller | IOWe
ALE
RosotClk RDY - DEN prm L —— C8e RAM
So |— T cs . 50 RAM
5, Ay —e Logic |—— TS0 ROM
S> b T80 ROM
8086 BHE | | TS 10
i f |
ADo-ADs, | T] 8@ L Ag Ay >
a 9 A O ;noﬁ! Qi | | }
A9/Se ‘{ 74373 i
——
= S Dot
MN / MX Xi bufers
74245
.i. DIR a
i Cso &si/ Cso Cse IORC
' 4 N Y
; i RD
> RAM ROM Vo
RO Wik oe | Wik
MRDC MWTC MRDC ﬂ |owc/]
D~ D15

Memory Read Timing Diagram in Maximum Mode of 8086

|..|7 One s cyvele J—

T, | T; | Ts | T, | T |

pEplinininle
ALE 4‘{—\

S-® Active 2 Imactive X' Active

Add/Status } { BHE, A — Ay }[By - By } """"""""""""

AddTeata Apz— A Dy, Iy,

AMREDC —\ }'[
DT/ K —\\ /

Memory Read Timing in Maximum Mode

Memory Write Timing in Maximum mode of 8086

vrme pus Cyene

- — =
| T, | T, | T, | T, | T, |

- A S S O O

ALE ! !
S Active K tmacive X acuve

ADD/STATUS W XeHEE) S, 5, S
ADD/DATA < Ais-A0 X Data out Dis =Dy »
ANTWT or ATOWC \ X

MWTC or IOWC

NS

DT/K high

N /

Memory Write Timing n Maximum mode.

RQ/GT Timings in Maximum Mode:

| | | I 1 \ | | | 1 |
Clk _-'I II_-'l'\ llll_-l !rl'l_lI Il._-'I II_FL‘\ I'I_ll
', R

W - hY
) T)
R_,l:? . ';T F, _.'I z-{l.

Another master CPU grant bus Master releases
request |1|H ACCESS

RQ/GT Timings in Maximum Mode

» The request/grant response sequence contains a series of three pulses. The
request/grant pins are checked at each rising pulse of clock input.

* When arequest is detected and if the condition for HOLD request is satisfied, the
processor issues a grant pulse over the RQ/GT pin immediately during T4 (current) or T1
(next) state.

* When the requesting master receives this pulse, it accepts the control of the bus, it
sends a release pulse to the processor using RQ/GT pin.

Interrupts:

The meaning of ‘interrupts’ is to break the sequence of operation. While the CPU is executing a
program, on ‘interrupt’ breaks the normal sequence of execution of instructions, diverts its
execution to some other program called Interrupt Service Routine (ISR).After executing ISR, the
control is transferred back again to the main program. Interrupt processing is an alternative to
polling.

Need for Interrupt: Interrupts are particularly useful when interfacing 1/0 devices that provide
or require data at relatively low data transfer rate.

Types of Interrupts: There are two types of Interrupts in 8086. They are:
(i)Hardware Interrupts
(i) Software Interrupts

e Hardware Interrupts (External Interrupts). The Intel microprocessors support hardware
interrupts through two pins that allow interrupt requests, INTR and NMI.

* One pin that acknowledges, INTA, the interrupt requested on INTR. INTR and NMI

* INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using STI/CLI
instructions or using more complicated method of updating the FLAGS register with the help
of the POP instruction.

* When an interrupt occurs, the processor stores FLAGS register into stack, disables further
interrupts, fetches from the bus one byte representing interrupt type, and jumps to interrupt

processing routine address of which is stored in location 4 * <interrupt type>. Interrupt
processing routine should return with the IRET instruction.

NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR
interrupt. Interrupt type of the NMl is 2, i.e. the address of the NMI processing routine is
stored in location 0008h. This interrupt has higher priority than the maskable interrupt.

Software Interrupts (Internal Interrupts and Instructions) :
Software interrupts can be caused by:

INT instruction - breakpoint interrupt.

This is a type 3 interrupt.

INT <interrupt number> instruction - any one interrupt from available 256 interrupts.
INTO instruction - interrupt on overflow

Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When the
CPU processes this interrupt it clears TF flag before calling the interrupt processing
routine.

Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape opcode

(type 7).
» Software interrupt processing is the same as for the hardware interrupts.
e Ex:INT n (Software Instructions)
* Control is provided through:
1. IFand TF flag bits
2. IRET and IRETD

Mimline ISK procedure
vnning Il] SH 'I'J' ‘

Program
[d ULEANIF . T}

MUSH (%
PUSH 1P
FEICH [SK ADDRESS

PLSH regintery

l'l"‘ Tosdisbvny
pop 1w

MoP O
PO FLAGK

e RIT

. It decrements SP by 2 and pushes the flag register on the stack.
. Disables INTR by clearing the IF.

. It resets the TF in the flag Register.

. It decrements SP by 2 and pushes CS on the stack.

. It decrements SP by 2 and pushes IP on the stack.

. Fetch the ISR address from the interrupt vector table

NO W N -

Interrupt Vector Table

PR T

010H

00CH

00SH

0041

000H

I'ype 4 POINTER
(OVERFLOW)
I'ype 3 POINTER
(BREAK POINT)
Type 2 POINTER
(NON-MASKABLE)
Type | POINTER
(SINGLE STEP)
Type 0 POINTER
(DIVIDE ERROR)

CS base address

TP offset

——— 16 bits ——

Interrupt Priority Structure

03FFH

Type 255 (Available)

03FCH

—

Type 32 (Available)

080H

Type 31 (Reserved)

07FH

-

0014H

Tyvpe S
Reserved

Available
Interrupts

(224)

Reserved
Interrupts
@n

INT Number

INT 00
INT 01
INT 02

INT FF

Interrupt

Priority

Divide Lrror, INT(n),INTO

NMI
INTR

Single Step

Ilighest

Addressing Modes of 8086:

Physical Address

00000
00004
00008

003FC

Addressing mode indicates a way of locating data or operands. Depending up on the data type
used in the instruction and the memory addressing modes, any instruction may belong to one
or more addressing modes or same instruction may not belong to any of the addressing modes.
The addressing mode describes the types of operands and the way they are accessed for
executing an instruction. According to the flow of instruction execution, the instructions may be
categorized as

1. Sequential control flow instructions and

2. Control transfer instructions.

Sequential control flow instructions are the instructions which after execution, transfer control
to the next instruction appearing immediately after it (in the sequence) in the program. For
example the arithmetic, logic, data transfer and processor control instructions are Sequential
control flow instructions.

The control transfer instructions on the other hand transfer control to some predefined address
or the address somehow specified in the instruction, after their execution. For example INT,
CALL, RET & JUMP instructions fall under this category

The addressing modes for Sequential and control flow instructions are explained as follows.

1. Immediate addressing mode:
In this type of addressing, immediate data is a part of instruction, and appears in the form of
successive byte or bytes.
Example: MOV AX, 0005H.
In the above example, 0005H is the immediate data. The immediate data may be 8- bit or 16-bit
in size.
2. Direct addressing mode:
In the direct addressing mode, a 16-bit memory address (offset) directly specified in the
instruction as a part of it

Example: MOV AX, [5000H].
3. Register addressing mode:
In the register addressing mode, the data is stored in a register and it is referred using the
particular register. All the registers, except IP, may be used in this mode.
Example: MOV BX, AX
4. Register indirect addressing mode:
Sometimes, the address of the memory location which contains data or operands is determined
in an indirect way, using the offset registers. The mode of addressing is known as register
indirect mode.
In this addressing mode, the offset address of data is in either BX or Sl or DI Register. The
default segment is either DS or ES.
Example: MOV AX, [BX].
5. Indexed addressing mode:
In this addressing mode, offset of the operand is stored one of the index registers. DS & ES are
the default segments for index registers Sl & DI respectively.
Example: MOV AX, [SI]
Here, data is available at an offset address stored in Sl in DS.

6. Register relative addressing mode:

In this addressing mode, the data is available at an effective address formed by adding an 8-bit
or 16-bit displacement with the content of any one of the register BX, BP, S| & Dl in the default
(either in DS & ES) segment.

Example: MOV AX, 50H [BX]

7. Based indexed addressing mode:

The effective address of data is formed in this addressing mode, by adding content of a base
register (any one of BX or BP) to the content of an index register (any one of Sl or DI). The
default segment register may be ES or DS.

Example: MOV AX, [BX][SI]

8. Relative based indexed:

The effective address is formed by adding an 8 or 16-bit displacement with the sum of contents
of any of the base registers (BX or BP) and any one of the index registers, in a default segment.
Example: MOV AX, 50H [BX] [SI]

For the control transfer instructions, the addressing modes depend upon whether the
destination location is within the same segment or in a different one. It also depends upon the
method of passing the destination address to the processor. Basically, there are two addressing
modes for the control transfer instructions, viz. intersegment and intrasegment addressing
modes.

If the location to which the control is to be transferred lies in a different segment other than
the current one, the mode is called intersegment mode. If the destination location lies in the
same segment, the mode is called intrasegment mode.

Addressing Modes for control transfer instructions:
1. Intersegment

* Intersegment direct

* Intersegment indirect.

2. Intrasegment
* Intrasegment direct
* Intrasegment indirect

1. Intersegment direct:

In this mode, the address to which the control is to be transferred is in a different segment. This
addressing mode provides a means of branching from one code segment to another code
segment. Here, the CS and IP of the destination address are specified directly in the instruction.
Example: JMP 5000H, 2000H;

Jump to effective address 2000H in segment 5000H.

2. Intersegment indirect:

In this mode, the address to which the control is to be transferred lies in a different segment
and it is passed to the instruction indirectly, i.e. contents of a memory block containing four
bytes, i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The starting address of the
memory block may be referred using any of the addressing modes, except immediate mode.
Example: JMP [2000H].

Jump to an address in the other segment specified at effective address 2000H in DS.

3. Intrasegment direct mode:

In this mode, the address to which the control is to be transferred lies in the same segment in
which the control transfers instruction lies and appears directly in the instruction as an
immediate displacement value. In this addressing mode, the displacement is computed relative
to the content of the instruction pointer.

The effective address to which the control will be transferred is given by the sum of 8 or 16 bit
displacement and current content of IP. In case of jump instruction, if the signed displacement
(d) is of 8-bits (i.e. -128<d<+127), it as short jump and if it is of 16 bits (i.e. -32768<d<+32767), it
is termed as long jump.

Example: JMP SHORT LABEL.

4. Intrasegment indirect mode:

In this mode, the displacement to which the control is to be transferred is in the same segment
in which the control transfer instruction lies, but it is passed to the instruction directly. Here,
the branch address is found as the content of a register or a memory location.

This addressing mode may be used in unconditional branch instructions.

Example: JMP [BX]; Jump to effective address stored in BX.

INSTRUCTION SET OF 8086

The Instruction set of 8086 microprocessor is classified into 7, they are:-
e Data transfer instructions
e Arithmetic& logical instructions
e Program control transfer instructions
e Machine Control Instructions
« Shift / rotate instructions
e Flag manipulation instructions
e Stringinstructions

Data Transfer instructions

Data transfer instruction, as the name suggests is for the transfer of data from memory to
internal register, from internal register to memory, from one register to another register, from
input port to internal register, from internal register to output port etc

1. MOV instruction

It is a general purpose instruction to transfer byte or word from register to register, memory to
register, register to memory or with immediate addressing.

General Form:

MOV destination, source

Here the source and destination needs to be of the same size, that is both 8 bit or both 16 bit.
MOV instruction does not affect any flags.

Example:-

MOV BX, 00F2H ; load the immediate number 00F2H in BX register

MOV CL, [2000H] ; Copy the 8 bit content of the memory location, at a displacement of 2000H
from data segment base to the CL register

MOV [589H], BX ; Copy the 16 bit content of BX register on to the memory location, which at a
displacement of 589H from the data segment base.

MOV DS, CX ; Move the content of CX to DS.

2. PUSH instruction

The PUSH instruction decrements the stack pointer by two and copies the word from source to
the location where stack pointer now points. Here the source must of word size data. Source
can be a general purpose register, segment register or a memory location.

The PUSH instruction first pushes the most significant byte to sp-1, then the least significant to
the sp-2.

Push instruction does not affect any flags

Example:-

PUSH CX ; Decrements SP by 2, copy content of CX to the stack (figure shows execution of this
instruction)

PUSH DS ; Decrement SP by 2 and copy DS to stack

3. POP instruction

The POP instruction copies a word from the stack location pointed by the stack pointer to the
destination. The destination can be a General purpose register, a segment register or a memory
location. Here after the content is copied the stack pointer is automatically incremented by
two.

The execution pattern is similar to that of the PUSH instruction.

Example:

POP CX ; Copy a word from the top of the stack to CX and increment SP by 2.

4. IN & OUT instructions

The IN instruction will copy data from a port to the accumulator. If 8 bit is read the data will go
to AL and if 16 bit then to AX. Similarly OUT instruction is used to copy data from accumulator
to an output port.

Both IN and OUT instructions can be done using direct and indirect addressing modes.

Example:

IN AL, OF8H; Copy a byte from the port OF8H to AL
MOV DX, 30F8H; Copy port address in DX

IN AL, DX; Move 8 bit data from 30F8H port

IN AX, DX; Move 16 bit data from 30F8H port

OUT 047H, AL; Copy contents of AL to 8 bit port 047H
MOV DX, 30F8H; Copy port address in DX

OUT DX, AL; Move 8 bit data to the 30F8H port

OUT DX, AX; Move 16 bit data to the 30F8H port

5. XCHG instruction

The XCHG instruction exchanges contents of the destination and source. Here destination and
source can be register and register or register and memory location, but XCHG cannot
interchange the value of 2 memory locations.

General Format

XCHG Destination, Source

Example:

XCHG BX, CX; exchange word in CX with the word in BX

XCHG AL, CL; exchange byte in CL with the byte in AL

XCHG AX, SUM[BX];here physical address, which is DS+SUM+[BX]. The content at physical
address and the content of AX are interchanged.

Arithmetic and Logic instructions:

The arithmetic and logic logical group of instruction include,

1. ADD instruction

Add instruction is used to add the current contents of destination with that of source and store

the result in destination. Here we can use register and/or memory locations. AF, CF, OF, PF, SF,
and ZF flags are affected

General Format:

ADD Destination, Source

Example:

ADD AL, OFH ; Add the immediate content, OFH to the content of AL and store the result in AL
ADD AX, BX ; AX <= AX+BX

ADD AX,0100H — IMMEDIATE

ADD AX,BX — REGISTER

ADD AX,[SI] —REGISTER INDIRECT OR INDEXED

ADD AX, [5000H] — DIRECT

ADD [5000H], 0100H — IMMEDIATE

ADD 0100H — DESTINATION AX (IMPLICT)

2. ADC: ADD WITH CARRY
This instruction performs the same operation as ADD instruction, but adds the carry flag bit
(which may be set as a result of the previous calculation) to the result. All the condition code
flags are affected by this instruction. The examples of this instruction along with the modes are
as follows:

Example:

ADC AX,BX —REGISTER

ADC AX,[SI] — REGISTER INDIRECT OR INDEXED

ADC AX, [5000H] — DIRECT

ADC [5000H], 0100H — IMMEDIATE

ADC 0100H — IMMEDIATE (AX IMPLICT)

3. SUB instruction
SUB instruction is used to subtract the current contents of destination with that of source and

store the result in destination. Here we can use register and/or memory locations. AF, CF, OF,
PF, SF, and ZF flags are affected

General Format:

SUB Destination, Source

Example:

SUB AL, OFH ; subtract the immediate content, OFH from the content of AL and store the result
in AL

SUB AX, BX ; AX <= AX-BX

SUB AX,0100H — IMMEDIATE (DESTINATION AX)

SUB AX,BX — REGISTER

SUB AX,[5000H] — DIRECT

SUB [5000H], 0100H — IMMEDIATE

4. SBB: SUBTRACT WITH BORROW

The subtract with borrow instruction subtracts the source operand and the borrow flag (CF)
which may reflect the result of the previous calculations, from the destination operand.
Subtraction with borrow, here means subtracting 1 from the subtraction obtained by SUB, if
carry (borrow) flag is set.

The result is stored in the destination operand. All the flags are affected (condition code) by this
instruction. The examples of this instruction are as follows:

Example:

SBB AX,0100H — IMMEDIATE (DESTINATION AX)
SBB AX,BX — REGISTER

SBB AX,[5000H] — DIRECT

SBB [5000H], 0100H — IMMEDIATE

5. CMP: COMPARE

The instruction compares the source operand, which may be a register or an immediate data or
a memory location, with a destination operand that may be a register or a memory location. For
comparison, it subtracts the source operand from the destination operand but does not store
the result anywhere. The flags are affected depending upon the result of the subtraction. If
both of the operands are equal, zero flag is set. If the source operand is greater than the
destination operand,carry flag is set or else, carry flag is reset. The examples of this instruction
are as follows:

Example:

CMP BX,0100H — IMMEDIATE

CMP AX,0100H - IMMEDIATE

6. INC & DEC instructions

INC and DEC instructions are used to increment and decrement the content of the specified
destination by one. AF, CF, OF, PF, SF, and ZF flags are affected.

Example:

INC AL;AlL<= AL + 1

INC AX;AX<=AX + 1

DECALAL<=AL-1

DEC AX;AX<=AX —1

7. AND instruction

This instruction logically ANDs each bit of the source byte/word with the corresponding bit in
the destination and stores the result in destination. The source can be an immediate number,
register or memory location, register can be a register or memory location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the operation and AF is
undefined.

General Format:

AND Destination, Source

Example:

AND BL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then after the operation BL would be
BL= 1000 0010.

AND CX, AX; CX <= CX AND AX AND CL, 08 ; CL<= CL AND (0000 1000)

8. OR instruction

This instruction logically ORs each bit of the source byte/word with the corresponding bit in the
destination and stores the result in destination. The source can be an immediate number,
register or memory location, register can be a register or memory location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the operation and AF is
undefined.

General Format:
OR Destination, Source

Example:
ORBL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then after the operation BL would be
BL= 1100 1110.

OR CX, AX; CX <= CX AND AX
OR CL, 08; CL<= CL AND (0000 1000)

9. NOT instruction

The NOT instruction complements (inverts) the contents of an operand register or a memory
location, bit by bit. The examples are as follows:

Example:

NOT AX (BEFORE AX=(1011),=(B)1s; AFTEREXECUTION AX=(0100),= (4)16)

10. XOR instruction

The XOR operation is again carried out in a similar way to the AND and OR operation. The
constraints on the operands are also similar. The XOR operation gives a high output, when the 2
input bits are dissimilar. Otherwise, the output is zero. The example instructions are as follows:
Example:

XOR AX,0098H

XOR AX,BX

Shift / Rotate Instructions:

Shift instructions move the binary data to the left or right by shifting them within the register or
memory location. They also can perform multiplication of powers of 2*" and division of powers
of 2™,

There are two type of shifts logical shifting and arithmetic shifting, later is used with signed
numbers while former with unsigned.

CcY Target register or memorny

:
]
-

j

SHR o —=| = m

Sign bt (MSEB)

. Shift operations

Rotate on the other hand rotates the information in a register or memory either from one end
to another or through the carry flag.
CY Targel regisier or memory

RCL |
(Rotate left through carry) |_D | l |

Cy

ROL
{ Rotate left) D‘__| Ih|
cY
RCR r‘l I "[]
(Rotate right through carry)

cY
o 0]
(Rotate right) F-‘

ROTATE OPERATIONS

SHL/SAL instruction

Both the instruction shifts each bit to left, and places the MSB in CF and LSB is made 0. The
destination can be of byte size or of word size, also it can be a register or a memory location.
Number of shifts is indicated by the count.

All flags are affected.

General Format:

SAL/SHL destination, count

Example:
MOV BL, B7H;BL is made B7H
SAL BL, 1; shift the content of BL register one place to left.

Before execution

cy B7 Be Bs B4 B3 Bz Bl Bo

0 1 0 1 1 0 1 1 1
After execution

cy B Be Bs B4 B3 B2 B1 Bo

1 0 1 1 0 1 1 1 0

1. SHR instruction

This instruction shifts each bit in the specified destination to the right and 0 is stored in the MSB
position. The LSB is shifted into the carry flag. The destination can be of byte size or of word
size, also it can be a register or a memory location. Number of shifts is indicated by the count.

All flags are affected

General Format: SHR destination, count

Example:

MOV BL, B7H ; BL is made B7H

SHR BL, 1; shift the content of BL register one place to the right.

BEFORE:
B, Bs Bs Ba Bs B, B1 Bo cY
1 0 1 1 0 1 1 1 0
AFTER:
B Bg Bs Ba Bs B, B1 Bo cy
0 1 0 1 1 0 1 1 1

2. ROL instruction

This instruction rotates all the bits in a specified byte or word to the left some number of bit
positions. MSB is placed as a new LSB and a new CF. The destination can be of byte size or of
word size, also it can be a register or a memory location. Number of shifts is indicated by the
count.

All flags are affected

General Format: ROL destination, count Example:
MOV BL, B7H ; BL is made B7H
ROLBL, 1; rotates the content of BL register one place to the left.

3. ROR instruction

This instruction rotates all the bits in a specified byte or word to the right some number of bit
positions. LSB is placed as a new MSB and a new CF. The destination can be of byte size or of
word size, also it can be a register or a memory location. Number of shifts is indicated by the
count.

All flags are affected

General Format: ROR destination, count

Example:

MOV BL, B7H ; BL is made B7H

ROR BL, 1; shift the content of BL register one place to the right.

4. RCR instruction

This instruction rotates all the bits in a specified byte or word to the right some number of bit
positions along with the carry flag. LSB is placed in a new CF and previous carry is placed in the
new MSB. The destination can be of byte size or of word size, also it can be a register or a
memory location. Number of shifts is indicated by the count.

All flags are affected

General Format: RCR destination, count Example:
MOV BL, B7H ; BL is made B7H
RCR BL, 1; shift the content of BL register one place to the right.

Program control transfer instructions

There are 2 types of such instructions. They are:

1. Unconditional transfer instructions — CALL, RET, JMP
2. Conditional transfer instructions —J condition

1. CALL instruction

The CALL instruction is used to transfer execution to a subprogram or procedure. There are two
types of CALL instructions, near and far.

A near CALL is a call to a procedure which is in the same code segment as the CALL instruction.
8086 when encountered a near call, it decrements the SP by 2 and copies the offset of the next
instruction after the CALL on the stack. It loads the IP with the offset of the procedure then to
start the execution of the procedure. A far CALL is the call to a procedure residing in a different
segment. Here value of CS and offset of the next instruction both are backed up in the stack.
And then branches to the procedure by changing the content of CS with the segment base
containing procedure and IP with the offset of the first instruction of the procedure

Example:

Near call

CALL PRO ; PRO is the name of the procedure

CALL CX ; Here CX contains the offset of the first instruction of

the procedure, that is replaces the content of IP with the content of CX

Far call

CALL DWORD PTR[8X] ; New values for CS and IP are fetched from four

memory locations in the DS. The new value for CS is fetched from [8X] and [8X+1], the new IP is
fetched from [8X+2] and [8X+3].

2. RET instruction

RET instruction will return execution from a procedure to the next instruction after the CALL
instruction in the calling program. If it was a near call, then IP is replaced with the value at the
top of the stack, if it had been a far call, then another POP of the stack is required. This second
popped data from the stack is put in the CS, thus resuming the execution of the calling
program. RET instruction can be followed by a number, to specify the parameters passed.

3. JMP instruction

This is also called as unconditional jump instruction, because the processor jumps to the
specified location rather than the instruction after the JMP instruction. Jumps can be short
jumps when the target address is in the same segment as the JMP instruction or far jumps
when it is in a different segment.

General Format: JMP<targetaddress>

4. Conditional Jump :

Conditional jumps are always short jumps in 8086. Here jump is done only if the condition
specified is true/false. If the condition is not satisfied, then the execution proceeds in the
normal way.

JC : Jump on carry (CF=set)
JNC : Jump on non carry (CF=reset)
JZ : Jump on zero (ZF=set)

JNO: Jump on overflow (OF=set)

5. Iteration control instructions

These instructions are used to execute a series of instructions some number of times. The
number is specified in the CX register, which will be automatically decremented in course of
iteration. But here the destination address for the jump must be in the range of -128 to 127
bytes.

LOOP : loop through the set of instructions until CX is O

LOOPE/LOOPZ : here the set of instructions are repeated until CX=0 or ZF=0
LOOPNE/LOOPNZ: here repeated until CX=0 or ZF=1

1. HLT instruction

The HLT instruction will cause the 8086 microprocessor to fetching and executing instructions.
The 8086 will enter a halt state. The processor gets out of this Halt signal upon an interrupt
signal in INTR pin/NMI pin or a reset signal on RESET input.

2. WAIT instruction

When this instruction is executed, the 8086 enters into an idle state. This idle state is continued
till a high is received on the TEST input pin or a valid interrupt signal is received. Wait affects no
flags. It generally is used to synchronize the 8086 with a peripheral device(s).

3. ESC instruction

This instruction is used to pass instruction to a coprocessor like 8087. There is a 6 bit instruction
for the coprocessor embedded in the ESC instruction. In most cases the 8086 treats ESC and a
NOP, but in some cases the 8086 will access data items in memory for the coprocessor

4. LOCK instruction

In multiprocessor environments, the different microprocessors share a system bus, which is
needed to access external devices like disks. LOCK Instruction is given as prefix in the case when
a processor needs exclusive access of the system bus for a particular instruction. It affects no
flags

Example:

LOCK XCHG SEMAPHORE, AL :The XCHG instruction requires two

bus accesses. The lock prefix prevents another processor from taking control of thesystem bus
between the 2 accesses

5. NOP instruction

At the end of NOP instruction, no operation is done other than the fetching and decoding of the
instruction. It takes 3 clock cycles. NOP is used to fill in time delays or to provide space for
instructions while trouble shooting. NOP affects no flags

Flag manipulation instructions:
1. STC instruction

This instruction sets the carry flag. It does not affect any other flag.
2. CLC instruction

This instruction resets the carry flag to zero. CLC does not affect any other flag.

3. CMCinstruction

This instruction complements the carry flag. CMC does not affect any other flag.

4. STD instruction

This instruction is used to set the direction flag to one so that Sl and/or DI can be decremented
automatically after execution of string instruction. STD does not affect any other flag.

5. CLD instruction

This instruction is used to reset the direction flag to zero so that Sl and/or DI can be
incremented automatically after execution of string instruction. CLD does not affect any other
flag.

6. STl instruction

This instruction sets the interrupt flag to 1. This enables INTR interrupt of the 8086. STI does not
affect any other flag.

7. CLl instruction

This instruction resets the interrupt flag to 0. Due to this the 8086 will not respond to an
interrupt signal on its INTR input. CLI does not affect any other flag.

String Instructions:

1. MOVS/MOVSB/MOVSW

These instructions copy a word or byte from a location in the data segment to a location in the
extra segment. The offset of the source is in Sl and that of destination is in DI. For multiple
word/byte transfers the count is stored in the CX register.

When direction flag is 0, Sl and DI are incremented and when it is 1, Sl and DI are decremented.
MOVS affect no flags. MOVSB is used for byte sized movements while MOVSW is for word sized.

Example:

CLD ; clear the direction flag to auto increment Sl and DI MOV AX, 0000H ;

MOV DS, AX ; initialize data segment register to 0 MOV ES, AX ; initialize extra segment register
to 0 MOV SI, 2000H ; Load the offset of the stringl in S| MOV DI, 2400H ; Load the offset of the
string2 in DI MOV CX, 04H ; load length of the string in CX

REP MOVSB ; decrement CX and MOVSB until CX will be O

2. REP/REPE/REP2/REPNE/REPNZ

REP is used with string instruction; it repeats an instruction until the specified condition
becomes false.

3. LODS/LODSB/LODSW

This instruction copies a byte from a string location pointed to by Sl to AL or a word from a
string location pointed to by Sl to AX.LODS does not affect any flags. LODSB copies byte and
LODSW copies word.

STOS/STOSB/STOSW

The STOS instruction is used to store a byte/word contained in AL/AX to

the offset contained in the DI register. STOS does not affect any flags. After copying the content
Dl is automatically incremented or decremented, based on the value of direction flag.

5. CMPS/CMPSB/CMPSW

CMPS is used to compare the strings, byte wise or word wise. The comparison is affected by
subtraction of content pointed by DI from that pointed by SI. The AF, CF, OF, PF, SF and ZF flags
are affected by this instruction, but neither operand is affected.

ASSEMBLER DIRECTIVES:

There are some instructions in the assembly language program which are not a part of
processor instruction set. These instructions are instructions to the assembler, linker and
loader. These are referred to as pseudo-operations or as assembler directives. The assembler
directives enable us to control the way in which a program assembles and lists. They act during
the assembly of a program and do not generate any executable machine code.

There are many specialized assembler directives. Let us see the commonly used assembler
directive in 8086 assembly language programming.

1. ASSUME:

It is used to tell the name of the logical segment the assembler to use for a specified segment.
E.g.: ASSUME CS: CODE tells that the instructions for a program are in a logical segment named
CODE.

2. DB -Define Byte:

The DB directive is used to reserve byte or bytes of memory locations in the available memory.
While preparing the EXE file, this directive directs the assembler to allocate the specified
number of memory bytes to the said data type that may be a constant, variable, string, etc.
Another option of this directive also initializes the reserved memory bytes with the ASCII codes
of the characters specified as a string. The following examples show how the DB directive is
used for different purposes.

3. DD -Define Double word - used to declare a double word type variable or to reserve memory
locations that can be accessed as double word.

4. DQ -Define Quad word

This directive is used to direct the assembler to reserve 4 words (8 bytes) of memory for the
specified variable and may initialize it with the specified values.

5. DT -Define Ten Bytes:

The DT directive directs the assembler to define the specified variable requiring 10-bytes for its
storage and initialize the 10-bytes with the specified values. The directive may be used in case
of variables facing heavy numerical calculations, generally processed by numerical processors.
6. DW -Define Word:

The DW directives serves the same purposes as the DB directive, but it now makes the
assembler reserve the number of memory words (16-bit) instead of bytes. Some examples are
given to explain this directive

. 7. END-End of Program:

The END directive marks the end of an assembly language program. When the assembler comes
across this END directive, it ignores the source lines available later on. Hence, it should be
ensured that the END statement should be the last statement in the file and should not appear
in between. Also, no useful program statement should lie in the file, after the END statement
8. ENDP-End Procedure - Used along with the name of the procedure to indicate the end of a
procedure.

E.g.: SQUARE_ROOT PROC: start of procedure SQUARE_ROOT ENDP: End of procedure

9. EQU-Equate - Used to give a name to some value or symbol. Each time the assembler finds
the given name in the program, it will replace the name with the vale.

E.g.: CORRECTION_FACTOR EQU 03H MOV AL, CORRECTION_FACTOR

10. LABEL- Used to give a name to the current value in the location counter.

This directive is followed by a term that specifies the type you want associated with that name.
E.g: ENTRY_POINT LABEL FAR

NEXT: MOV AL, BL

11. OFFSET- Used to determine the offset or displacement of a named data item or procedure
from the start of the segment which contains it.

E.g.: MOV BX, OFFSET PRICES

12. ORG- The location counter is set to 0000 when the assembler starts reading a segment. The
ORG directive allows setting a desired value at any point in the program.

E.g.: ORG 2000H

CODE FOR 8 BIT ADDER
DATA SEGMENT

A1 DB 50H

A2 DB 51H

RESDB?

DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS:DATA
START: MOV AX,DATA
MOV DS,AX

MOV AL,A1

MOV BL,A2

ADD AL,BL

MOV RES,AL

MOV AX,4CO0H

INT 21H

CODE ENDS

END START

CODE FOR 16 BIT ADDER
DATA SEGMENT

Al DW 0036H

A2 DW 0004H SUM DW ?
DATA ENDS

CODE SEGMENT
ASSUME CS:CODE,DS:DATA
START: MOV AX,DATA
MOV DS,AX

MOV AX,Al

MOV BX,A2

DIV BX

MOV SUM,AX

MOV AX,0008H

INT 21H

CODE ENDS

END START

ARRAY SUM

.MODEL SMALL

.DATA

ARRAY DB 12H, 24H, 26H, 63H, 25H, 86H, 2FH, 33H, 10H, 35H

SUM DW 0

.CODE

START:MOV AX, @DATA
MOV DS, AX

MOV CL, 10

XOR DI, DI

LEA BX, ARRAY

BACK: MOV AL, [BX+Dl]
MOV AH, 00H

ADD SUM, AX

INC DI

DECCL

JNZ BACK

END START

ASCIITOHEX

DATA SEGMENT

A DB 41H

RDB?

DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS:DATA
START: MOV AX,DATA
MOV DS,AX

MOV ALA

SUB AL,30H

CMP AL,39H

JBE L1

SUB AL,7H

L1: MOV R,AL

INT 3H

CODE ENDS

END START

8BMUL

DATA SEGMENT

Al DB 25H

A2 DB 25H

A3DB?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA START:MOV AX,DATA
MOV DS,AX

MOV ALA1

MOV BL,A2
MUL BL

MOV A3,AL
MOV AX,4CO0H
INT 21H

CODE ENDS
END START

16BIT MUL

DATA SEGMENT

Al DW 1000H

A2 DW 1000H

A3 DW?

A4 DW?

DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS:DATA
START:MOV AX,DATA
MOV DS,AX

MOV AX,Al

MOV BX,A2

MUL BX

MOV A3,DX

MOV A4,AX

MOV AX,4CO0H

INT 21H

CODE ENDS

END START

HEX TO ASCII

DATA SEGMENT

A DB 0O8H

CDB?

DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS: DATA
START: MOV AX,DATA
MOV DS,AX

MOV ALA

ADD AL,30H

CMP AL,39H

JBEL1

ADD AL,7H

L1: MOV CAL

INT 3H
CODE ENDS
END START

GREATEST NUMBER IN ARRAY
.MODEL SMALL

.STACK 100

.DATA

ARRAY DB 63H,32H,45H,75,12H,42H,09H,14H,56H,38H
MAX DB 0

.CODE

START:MOV AX, @DATA
MOV DS,AX

XOR DI, DI

MOV CL,10

LEA BX,ARRAY

MOV AL MAX

BACK: CMP AL, [BX+DI]
JNC SKIP

MOV DL,[BX+DI]

MOV AL,DL

SKIP: INC DI

DEC CL

JNZ BACK

MOV MAX,AL

MOV AX,4CO0H

INT 21H

END START

UNIT-6

Difference between Microprocessor & Microcontroller

MICROPROCESSOR MICROCONTROLLER
Microprocessor widely used in the computer | And microcontroller is used in embedded
system.. system.

If the microprocessor is the heart of computer | microcontroller is the heart of the embedded
system. system.

The microprocessor uses Von Neumann
architecture where data and program present
in the same memory module

The microcontroller uses Harvard architecture.
In this module, data and program get stored in
separate memory. The microcontroller can
access data and program at the same time as
it is in a separate memory. This is one of the
reasons microcontrollers is faster than the
microprocessor.

The microprocessor cannot operate without
peripheral components. It has only processing
unit and we have to attach all the required
components externally to operate

Whereas the microcontroller has small
processing unit along with internal memory to
store and I/0O components to give input. So it
can work independently.

As we have to connect components externally,
microprocessor circuit becomes large and
complex

In @ microcontroller, all the components are
internally connected, so the circuit becomes
too small. The microcontroller can be used in
the compact system as it has a small size. It
provides better and efficient technique in the
compact system than the microprocessor.

icroprocessor requires external components
and its circuits also complex. It requires more
power consumption. So it is difficult to
operate microprocessor using battery power.

The microcontroller has very low external
components. it manages all its operation
inside the single chip. So it consumes very low
power supply as compared to the
microprocessor. We can operate
microcontroller on the externally connected
stored power such as a battery.

Most of the Microprocessor does not have this
power saving feature.

The microcontroller can have multiple modes
of operation such as higher performance,
balance, idle or power saving mode. So if we
operate microcontroller in power saving
mode, the power consumption reduce even
more.

The microprocessor has very less internal
registers. It has to rely on external storage. So
all the memory operations are carried out
using memory-based external commands.
Results in high processing time.

The microcontroller has many registers for
instruction execution. Fetching data and
storing data require internal commands. So its
execution and processing time are lower than
the microprocessor.

Microprocessor can perform variety of | Microcontroller are designed for single
operations purpose

8 bit & 16 bit microcontroller

In 8-bit microcontroller, the point when the internal bus is 8-bit then the ALU is performs the
arithmetic and logic operations. The examples of 8-bit microcontrollers are Intel 8031/8051,
PIC1x and Motorola MC68HC11 families

The 16-bit microcontroller performs greater precision and performance as compared to 8-bit.
For example 8 bit microcontrollers can only use 8 bits, resulting in a final range of 0x00 — OxFF
(0-255) for every cycle. In contrast, 16 bit microcontrollers with its 16 bit data width has a range
of 0x0000 — OxFFFF (0-65535) for every cycle. A longer timer most extreme worth can likely
prove to be useful in certain applications and circuits. It can automatically operate on two 16 bit
numbers. Some examples of 16-bit microcontroller are 16-bit MCUs are extended 8051XA,
PIC2x, Intel 8096 and Motorola MC68HC12 families.

CISC & RISC processor

Complex Instruction Set (CISC) Reduced Instruction Set (RISC)

1. Emphasis on hardware/less load on programmer 1. Emphasis on software/less load on hardware

2. Includes multi-clock complex instructions 2. Single-clock, reduced instruction only

3. Memory-to-memory: "LOAD" and "STORE" 3. Register to register: "LOAD" and "STORE"
incorporated in instructions are independent instructions

4. Small code sizes, high cycles per second (CPI) 4. Low cycles per second (CPI), large code sizes

5. Transistors used for storing complex instructions 5. Spends more transistors on memory ‘registers’
(memory)

CISC advantages vs disadvantages
ADVANTAGES:
» Source code programs are short; fewer instructions; this saves memory space.
* Fewer instructions in a code means fewer instruction bytes to be fetched. (reducing
fetch operations).
* A complex High-Level Language (HLL) operation will execute more quickly in a single
machine instruction (cycle).
DIADVANTAGES
* Memory is now much inexpensive
e The number of bits of memory occupied by a CISC program (in machine language) may
not be noticeably small (heavy programs.

Using complex and fewer instructions, code size cannot be reduced/optimized by the
programmer (inflexible).

The individual instructions are complex, and they take a long time to decode and
execute.

CISC uses memory references for operands, which is much slower.

There are more instructions on a CISC, longer opcodes are required, producing longer
instructions. (instructions lengths vary)

Each instruction takes different clock cycles to execute, so in CISC, the pipeline is not
possible. (to execute multiple instructions in parallel).

RISC Advantages

The instructions are simple/primitive, and they execute fast.

RISC uses registers to access operands, which are much faster to read.

Instruction length is fixed, especially the opcode so opcode decoding and register
operand accessing can occur simultaneously.

The source code is long, but it is flexible enough to be optimized.

Because each instruction takes one clock cycle, instruction pipelining is possible. This
improves processor operating speed.

RISC processors are more responsive to interrupts because interrupts are checked
between each small instruction/every machine cycle.

Architecture of 8051Microcontroller

Some of the features that have made the 8051 popular are:
i 64 KB on chip program memory.

ia 128 bytes on chip data memory (RAM).

i 4 register banks.

ia 128 user defined software flags.

i 8-bit data bus

i 16-bit address bus

i 32 general purpose registers each of 8 bits

i 16 bit timers (usually 2, but may have more, or less).
ia 3 internal and 2 external interrupts.

i Bit as well as byte addressable RAM area of 16 bytes.
i Four 8-bit ports, (short models have two 8-bit ports).
i 16-bit program counter and data pointer.

i | Microsecond instruction cycle with 12 MHz Crystal.

Voe =i

W=s _|_—=
1
1
]
i
i
: RAM Addr
1
1
1
I
i
i
1
1
1
1
1
i
i
|
|
1
1]
: Regiter
1
i
1
1
1
1
1
1
i
i
PSENH +——

ALEIFROGY =——— Timing

Fan @ Fan2
Diivers Dhivers

Ragiztar — Rt

Fan D Fain2
Latch Latch

and

|
EARIWFP——* Coninl

RET ——»

Irstruction
Regiitei

TMF1|

EFRQLY
RO

Stack
Pointer

Intemupt Senal Par.
and Timel Elocls

CEC.

Drive s

NTALE

Rl

F1oO-P1 T

Frogram

Addiess |y

Rezgister

T

INCre mener Li
-

Program
U | E E—
E ™ Ceuntar

Drivems

PAD-F3 7

8051 PIN DIAGRAM:

P1.0 |1 "/ 0[] Vee
P11]2 39(71P0.OAD,
P1.2 3 38|_] PO.1 AD,
PiarT|4 3771 PO.2 AD,
Pid4]5 36] PO.3 AD,
PISC5 3571 P04 AD,
P18 7 341 P0.5 AD:
P78 3371 PO.6 AD;
RSTA/PD] 9 8031 327 PO.7 AD,
RXDP3.0 10 3051 31 EAwPe
8751
TXD P31] 11 30] ALE/PROG
INTO P3.2] 12 29[PSEN
INTY P3.3 13 2B[TIP2TA,,
ToP3.4 |14 27| P26 A,,
TIP35 |15 26| P25A,,
WR P36 |16 25(T1P24 A,
RD P3.7 | 17 24[T1P2.3A,,
XTAL2] 18 23] P2.2 Ay
XTALY1] 19 2[JP2.1 Ay
Vee C] 20 211 P2.0 A,
Basic Pins:

Pin 9: PIN 9 is the reset pin which is used reset the microcontroller’s internal registers and ports
upon starting up. (Pin should be held high for 2 machine cycles.)

Pins 18 & 19: The 8051 has a built-in oscillator amplifier hence we need to only connect a
crystal at these pins to provide clock pulses to the circuit.

Pin 40 and 20: Pins 40 and 20 are VCC and ground respectively. The 8051 chip needs +5V
500mA to function properly, although there are lower powered versions like the Atmel 2051
which is a scaled down version of the 8051 which runs on +3V.

Pins 29, 30 & 31: As described in the features of the 8051, this chip contains a built-in flash
memory. In order to program this we need to supply a voltage of +12V at pin 31. If external
memory is connected then PIN 31, also called EA/VPP, should be connected to ground to
indicate the presence of external memory. PIN 30 is called ALE (address latch enable), which is
used when multiple memory chips are connected to the controller and only one of them needs
to be selected. We will deal with this in depth in the later chapters. PIN 29 is called PSEN. This is
"program store enable". In order to use the external memory it is required to provide the low
voltage (0) on both PSEN and EA pins.

Ports:
There are 4 8-bit ports: PO, P1, P2 and P3.

PORT P1 (Pins 1 to 8): The port P1 is a general purpose input/output port which can be used for
a variety of interfacing tasks. The other ports PO, P2 and P3 have dual roles or additional
functions associated with them based upon the context of their usage.

PORT P3 (Pins 10 to 17): PORT P3 acts as a normal 10 port, but Port P3 has additional functions
such as, serial transmit and receive pins, 2 external interrupt pins, 2 external counter inputs,
read and write pins for memory access.

P30 — RXD (Senal mput)

P31 - TXD (Serial output)

P3.2 - INTO (External interrupt)

P33 — INTI (External interrupt)

P34 - TO (Tumer 0 external input)

P35 - T1 (Tumer 1 external input)

P36 — we (External data memory write strobe)
P37 - kD (External data memory read strobe)

PORT P2 (pins 21 to 28): PORT P2 can also be used as a general purpose 8 bit port when no
external memory is present, but if external memory access is required then PORT P2 will act as
an address bus in conjunction with PORT PO to access external memory. PORT P2 acts as A8-
A15, as can be seen from ABOVE fig

PORT PO (pins 32 to 39) PORT PO can be used as a general purpose 8 bit port when no external
memory is present, but if external memory access is required then PORT PO acts as a
multiplexed address and data bus that can be used to access external memory in conjunction
with PORT P2. PO acts as ADO-AD7, as can be seen from above fig

Oscillator Circuits

The 8051 requires the existence of an external oscillator circuit. The oscillator circuit usually
runs around 12MHz, although the 8051 (depending on which specific model) is capable of
running at a maximum of 40MHz. Each machine cycle in the 8051 is 12 clock cycles, giving an
effective cycle rate at 1MHz (for a 12MHz clock) to 3.33MHz (for the maximum 40MHz clock).

The 8051 has an internal clock circuit, hence acrystal of proper frequency can be connected
directly to these two pins. The frequency range is 3.5-12 MHz. An external oscillator can also be
connected instead of a crystal. In this case, the XTAL1 pin is grounded and the oscillator signal is
given to the XTAL2 pin

PS EN: This pin gives out active low output pulses. This signal is used for fetching the data from
the external program memory. A pulse is generated after every six clock cycles. This is used as a
read signal for reading from the external program memory. If the data to be fetched | inside the
chip itself, then is PS ENnot generated. This signal is also not generated during the external
data memory operation.

EA /VPP: This pin, if connected to 5 V, will indicate to the processor that the 4 KB of the
program memory within the chip should be used. Hence addresses 0000H to OFFFH will be
within the chip. Once the address exceeds this, i.e. 1000H to FFFFH, the external program
memory is accessed. This pin, if pulled low, will inform the processor that the on chip

ROM is not being used. Hence the entire 64 KB will be external to the chip. So, depending on
whether a designer is using the internal program memory or not, he/she will have to connect

the pin to either 5 V or ground. This pin is also used while programming the 8751 as
programming supply (VPP) voltage (21 V).

RST/VPD: A high on this pin, for more than 24 oscillator cycles, will reset the chip. VPD may be
used to supply power to the internal RAM during power failure or power down modes.

Memory Organisation
The 8051 can access up to 64 KB of program memory and 64 KB of external data memory and
also the internal data RAM locations. Figure below shows the memory mapping in this chip

Program Memory (Read Only) Data Memory (Read/Write)
P FEEFH :
: FFFEH ! 4]
N R External —p
External i
: £ OFFFH : E Internal
== 1= P 3 FFH 4 :
i EA=0 EA=1 P : E
: | External Exiermnal P 3
- - : 1 00
: 0000 :
: P 0000 :
ara e MR R R ER R AR H n.-u--u.uun"--.-u-u-u::; ------- : suamnd
PSEN RD =
FEFE]
FFFF]
Exdernial

|

1000 |

|

: I o= Dverlepped

intarnal | | Externar | f\ b :

ER=5v1 | | ER=0w | o R LR T g s |

| | a0 ik] J |

| |] i e |

o000 | oo | l ;.;.l— rg AAM] o, SR

* Progam memery Intomad data memary Etemal dats memory

External Data Memory and Program Memory

We have seen that 8051 has internal data and code memory with limited memory
capacity. This memory capacity may not be sufficient for some applications. In such
situations, we have to connect external ROM/EPROM and RAM to 8051 microcontroller to
increase the memory capacity. We also know that ROM is used as a program memory and
RAM is used as a data memory. Let us see how 8051 accesses these memories.

External Program Memory
a map of the 8051 program memory.

FFFF H FFFFH
60 Kbytes
External
64 Kbyles
OR External
1000 H I
OFFF H 2
Kbytes
0000
0000 Internal

" The 8051 program memory

In 8051, when the EA pin is connected to Vo, program fetches to addresses 0000H
through OFFFH are directed to the internal ROM and program fetches to addresses 1000H
through FFFFH are directed to external ROM/EPROM. On the other hand when EA pin is
grounded, all addresses (0000H to FFFFH) fetched by program are directed to the external
ROM/EPROM. The PSEN signal is used to activate output enable signal of the external
ROM/EPROM, as shown in the Fig,

SPECIAL FUNCTION REGISTERS:

All the resources in the 8051 can be accessed through special function registers maintained in
the internal data memory. The resources like timers would require setting the modes and
controlling them. Similarly, serial data input would require a serial data buffer as well as the
control. The 8051 offers 4 ports which can be used for various purposes like input/output,
memory interface, and so on. The functions of these resources can also be programmed
through special function registersWe shall now describe all the special function registers
available in the 8051. As the name itself suggests, these registers have some special functions
like controlling the timer/counter, enabling interrupts, controlling the serial port operations,
etc. There are 21 special function registers in the 8051. Some special function registers are bit
addressable. The various special function registers are shown below:

ACC - Accumulator”®

B - B Register™

PSW - Program Status Word*
SP - Stack Pointer

DPTR (Low) - Data Pointer Low

DPTR (High) - Data Pointer High

PO - Port 0*

P1 - Port 1*

P2 - Port 2*

P3 - Port 3*

IP - Interrupt Priority*

IE - Interrupt Enable*
TMOD - Timer/Counter Mode
TCON - Timer/Counter Control*
THO - (Timer/Counter) 0 High
TLO - (Timer/Counter) 0 Low
TH1 - (Timer/Counter) 1 High
TLA - (Timer/Counter) 1 Low
SCON - Serial Control*

SBUF - Serial Data Buffer

PCON - Power Control

Accumulator: ACC (also called A register) is the accumulator. Thereare many instructions that
use the accumulator as the destination. In nearly all arithmetic operations, ACC is used as one
of the operands and after the operation, the result is also stored in the ACC.

B Register: This register is mainly used for multiply and divide operations in which this register
acts as one of the operands and after the operations a part of the result is stored in this
register. This register otherwise is just like a scratch pad, i.e. a temporary register.

Stack Pointer: The stack pointer in the 8051 is an 8-bit wide register. This pointer can point to
any location in the internal data RAM, i.e. locations from 0—127. When the chip is reset, this
register is initialized to 07H. During PUSH and CALL instructions the stack pointer is first
incremented and then the data is stored in the stack. That is, if initially (SP) = 20H, then the first
bytes of the data will be stored at the 21H address.

Data Pointer: The data pointer (DPTR) is a 16-bit register, consisting of a high byte (DPH) and a
low byte (DPL). This register normally contains a 16-bit address

Serial Data Buffer (SBUF): This register holds the data that has to be transmitted through the
serial port and also holds the data that is received. This register is interconnected to two 8-bit
shift registers. When the data is written into the SBUF, it is loaded in the transmit shift register
and hence the process of moving a data byte into the SBUF starts the transmission process.
During reception, the data coming to the 8051 is clocked into the receive shift register and once
all the 8 bits of data or a frame is received, it is transferred to the SBUF.

Control and status registers: All the special function registers (like IP, IE, TMOD, TCON, PCON,
SCON, etc.) that are used for controlling the internal resources or to see the status of these
resources come under this category. These registers contain the control and status bits of the
interrupt systems, timers, and serial port operations.

THE LIST OF ALL SFRS

Symbol Marme Address Value in Binary
“AGC Accumuslator OEOH Qo000 000D
"B B Register OF0H Qo000 D00
"PEW Program Status Word nooH 0000 0000
5P Slack Pointer E1H D00 0111
DPTR Data Painter 2 Bytes

DPL Low Byte #2H gooo 000D

DPH High Byte #3H Q000 D000
‘PO Port I B0H 1111 1111
"P1 Fort 1 B0H 1111 1111
P Fort 2 OADH 1111 1111
Pl Port 3 080H 1111 1111
e Inberrugt Pricsy Contral oaEH :f:l ii : E E : : un
- Internupt Enable Control 0a8H B0ST OXXO0 000D

8052 OXOO 0000
TMOD Times/'Counter Mode Control BOH D000 0000
*TCON Timer'Counter Control BAH oooo 2000
"+ T2CON Timen Counter 2 Control OCEH 0000 0000
THO TimesCounter 0 High Eyte ECH D000 D000
TLO Timed'Countar 0 Low Byte BAH o000 0000
TH1 Times'Counter 1 High Byte EDH o000 oooo
TLI TimedCounter 1 LowByie E8H 0000 0000
+ TH2 Timex'Counter 2 High Byte 0CDH o000 0000
+ L2 TimesCounter 2 Low Byte OCCH 0000 0000
+ RCAPZH TIC 2 Caplure Reg. High Byte DCEH 0000 000D
+ RCAP2L TICECapmr&R&g.LmEy'te OcAH Q000 OODOD
* SCON Serial Control HHH 0000 QOO0
SBUF Serial Data Buffer aeH Interminate
PCON Power Control HTH HMOS DXXE XXXX
CHMOS O0XXX 0000

8051 TIMER AND COUNTER

TCON and TMOD Function Registers
7 6 5 4 3 2 1 0

TF1 TR1 TFQ TRO IE1 IT1 EO 1o

THE TIMER CONTROL {TCON) SPECIAL FUNCTION REGISTER

Bit Symbol

7 TEY

6 TR1

5 TFO

4 TRO

3 IE1

2 I

1 IEQ
Bit Symbol
0 ITo

Function
Timer 1 Overflow flag. Set when timer rolls from all ones to zero. Cleared when processor
vectors to execute interrupt service routine located at program address 0018h.

Timer 1 run control bit. Set to ¥ by program to enable timer to count; cleared to 0 by
program tg halt timer. Does not reset timer.

Timer 0 Overflow flag. Set when timer rolfs from all ones to zero, Cleared when processor
vectors 10 execute interrupt service routine located at program address 0008h.

Timer O run control bit. Set to 1 by program to enable timer to count; cleared to 0 by
program to halt timer. Does not reset timer.

External interrupt 1 edge flag. Set to 1 when a high to low edge signal is received on part 3
pin 3.3 (INT1). Cleared when processor vectors to interrupt service routing
lncated at program address D013h. Not related to timer operations.

External interrupt 1 signal type control bit. Set to 1 by program to enable external interrupt 1
to be triggered by a falling edge signal. Set to O by program to enable a low level
signal on external interrupt 1 to generate an interrupt.

External interrupt O edge flag. Set to 1 when a high to low edge signal is received on port 3
pin 3.2 {INTD), Cleared when processor vectors to interrupt service routine located at
program address 0003h. Not related to timer operations.

Function

External interrupt O signal type contral bit. $et to 1 by program to enable external interrupt 0
to be triggered by a falling edge signal. Set to O by program to enable 4 low level
signal on external interrupt 0 to generate an interrupt.

7 6 5 4 3 2 1 o

Gate | CAT M1 MO | Gate | CFF M1 MU-J

[Timer 3 1! Timer 0]
THE TIMER MODE CONTROL (TMOD) SPECIAL FUNCTION REGISTER

Bit Symbeol Function

7/3 Gate OR gate enable bit which controls RUN/STOP of timer 1/0. Set to 1 by program to enable
timer to run if bit TR1/0 in TCON is set and signal on external interrupt INT1/0 pin is
high. Cleared to O by program to enable timer to run if bit TR1/0 in TCON is set.

62 CfT Set 1o 1 by program to make timer 1/0 act as a counter by counting pulses from external
input pins 3.5 {T1) or 3.4 (T0). Cleared to 0 by program to make timer act as a timer
by caunting internal frequency.

541 M1 Timer/counter operating mode select bit 1. Set/cleared by program to select mode.
4/0 MO Timer/counter operating mode select bit 0. Set/cleared by program to select mode.
M1 MO Mode
¢ 0 0
0 1 1
1 0 2
1 1 3

Many microcontroller applications require the counting of external events, such as the
frequency of a pulse train, or the generation of precise internal fime delays between com-
puter actions. Both of these tasks can be accomplished using software technigues, but
software loops for counting or timing keep the processor occupied so that other, perhaps
more important, functions arc not done. To relicve the processor of this burden, two 16-bit
up counters, named TO and T, are provided for the general use of the programmer. Each
counter may be programmed to count internal clock pulses, acting as a timer, or pro-
grammed to count external pulses as a counter.

The counters are divided into two B-hit registers called the nmer low (TLO, TL1) and
high (THO, THI) bytes. All counter action is controlled by bit states in the timer mode
control register (TMOD), the timer/counter control register (TCON), and certain program
nstructions.

TMOD is dedicated solely to the two timers and can be considered to be two duplicate
4-bit registers, each of which controls the action of one of the ttmers. TCON has control
bits and Aags for the timers in the upper nibble, and control bits and flags for the external
interrupts in the lower nibble. Fipure 2. 10 shows the bit assignments for TMOD and TCON.

Timer Counter Interrupts

The counters have been included on the chip to relieve the processor of timing and count-
ing chores. When the program wishes to count a certain number of internal pulses or
external events, a number is placed in one of the counters. The number represents the
maximum count /ess the desired count, plus one. The counter increments from the initial
number to the maximum and then rolls over to zero on the final pulse and also sets a timer
flag. The flag condition may be tested by an instruction to tell the program that the count
has been accomplished, or the flag may be used to interrupt the program.

: Timer
Oscillator - +124
Frequency
C/T = 0 (TMOD Yimer Operation) e
J Ot To Timer sm
Counter Icff = 1 (TMOD Counter Operation)
T1/0 loput Pin >

TR1/0 8it In TCON ———-D—
g __%D—a FIGURE 2.11
INT1/0 Input Pin

Timing

If a counter is programmed to be a timer, it will count the internal clock frequency of the
8051 oscillator divided by 12d. As an example, if the crystal frequency is 6.0 megahertz,
then the timer clock will have a frequency of 500 kilohertz.

The resultant timer clock is gated to the timer by means of the circuit shown in Figure
2.11. In order for oscillator clock pulses to reach the timer, the C/T bit in the TMOD
register must be set to O (timer operation), Bit TRX in the TCON register must be set to 1
(timer run), and the gate bit in the TMOD register must be 0, or external pin INTX must
be a 1. In other words, the counter is configured as a timer, then the timer pulses are gated
to the counter by the run bit and the gate bit or the external input bits INTX.

Timer Modes of Operation

The timers may operate in any one of four modes that are determined by the mode bits,
M1 and MO, in the TMOD register. Figure 2.12 shows the four timer modes.

Timer Mode 0

Setting timer X mode bits to 00b in the TMOD register results in using the THX register
as an R-bit counter and TLX as a 5-bit counter; the pulse input is divided by 32d in TL so
that TH counts the original oscillator frequency reduced by a total 384d. As an example,
the 6 megaheriz oscillator frequency would result in a final frequency to TH of 15625
hertz. The timer flag is set whenever THX goes from FFh to 00h., or in .0164 seconds for

a 6 megahertz crystal if THX starts at 00h.

Timer Mode 1

Maode | is similar to mode 0 except TLX is configured as a full B-bit counter when the
mode bits are set to 01b in TMOD. The timer flag would be set in .1311 seconds using
a 6 megahertz crystal.

Timer Mode 2

Setting the mode bits to 10b in TMOD configures the timer to use only the TLX counter as
an 8-bit counter, THX is used to hold a value that is loaded into TLX every time TLX
overflows from FFh to 00h. The timer flag is also set when TLX overflows.

This mode exhibits an auto-reload feature: TLX will count up from the number in
THX, overflow, and be initialized again with the contents of THX. For example, placing

9Ch in THX will result in a delay of exactly .0002 seconds before the overflow flag is set
if a 6 megahertz crystal is used.

Timer Mode 3

Timers O and 1 may be programmed 1o be in mode 0, 1, or 2 independently of a similar
mode for the other timer. This is not true for mode 3; the timers do not operate indepen-
dently if mode 3 is chosen for timer 0. Placing timer | in mode 3 causes it to stop count-
ing; the control bit TR1 and the timer | flag TF1 are then used by timer 0.

Timer 0 in mode 3 becomes two completely separate 8-bit counters. TLO is controlled
by the gate arrangement of Figure 2.11 and sets timer Rag TF) whenever it overflows from
FFh to 00h. THO receives the timer clock (the oscillator divided by 12) under the control
of TR1 only and sets the TF1 flag when it overflows.

Timer | may still be used in modes O, 1, and 2, while timer 0 is in mode 3 with one
tmportant exception: No interrupts will be generated by timer 1 while timer 0 is using the
TF1 overflow flag. Switching timer 1 to mode 3 will stop it (and hold whatever count is in
timer 1). Timer | can be used for baud rate generation for the serial port, or any other
mode 0, 1, or 2 function that does not depend upon an interrupt {or any other use of the

TF! flag) for proper operation.

*

FIGURE 2.12 Timer 1 and Timer 0 Operation Modes

Pulse
Input — TLX 5 Bits THX 8 Bits TFX i Interrupt
(Figure 2.11)
Timer Mode 0 13 - Bit Timer/Counter
Pulse
Input —ae TLX 8 Bits THX 8 Bits TFX ot |NterrUpt
{Figure 2.11)
Timer Mode 1 16 - Bit Timer/Counter
Pulse .
Input o TLX 8 Bits TFX e | fyF F7LI [
(Figure 2.11}
Reload TLX
/
THX & Bits
Timer Mode 2 Auto- Reload of TL from TH
Pulse .
Input — TLO8Bils TFO = [nterrupt
Figure Z2.11)
112 P — THO B Bits TF1 = Interupt
TR1Bit
In TCON

Timer Mode 3 Two 8- Bit Timers Using Timer 0

8051 Microcontroller Interrupts

There are five interrupt sources for the 8051, which means that they can recognize 5 different
events that can interrupt regular program execution. Each interrupt can be enabled or disabled
by setting bits in the IE register. Also, as seen from the picture below the whole interrupt
system can be disabled by clearing bit EA from the same register. Namely, if the bits ITO and IT1
stored in the TCON register areset, program interrupt will occur on changing logic state from 1
to 0, (only at the moment). If these bits are cleared, the same signal will generate interrupt
request and it will be continuously executed as far as the pins are held low.

Register TCON

Register |E

.;/\
A >,

IE1
TEO
Timer 0 EA
oo —» Interrupt
Timer 1 Il
T
UART [R @
8051
IE Register (Interrupt Enable)
X X 0 0 o] 0 0 0 Value after reset
IP | | | P2 | ps | PT1 | Px1 | PTO | PX0 | Bitname

bit7? hité bits hit4 hit3 hit2 hit1 bit0
Interrupt Enable

¢ EA - bit enables or disables all other interrupt sources (globally)

2 0 - (when cleared) any interrupt request is ignored (even if it is enabled)

2 1- (when set to 1) enables all interrupts requests which are individually enabled
e ES - bit enables or disables serial communication interrupt (UART)

o 0 - UART System cannot generate interrupt

2 1- UART System enables interrupt
¢ ET1 - bit enables or disables Timer 1 interrupt

2 0 - Timer 1 cannot generate interrupt

o 1 - Timer 1 enables interrupt
e EX1 - bit enables or disables INT 0 pin external interrupt

2 0 - change of the pin INTO logic state cannot generate interrupt

o 1 - enables external interrupt at the moment of changing the pin INTO state
e ET0 - bit enables or disables timer 0 interrupt

2 0 - Timer 0 cannot generate interrupt
> 1 - enables timer 0 interrupt
e EXO - bit enables or disables INT1 pin external interrupt

> 0 - change of the INT1 pin logic state cannot cause interrupt

> 1 - enables external interrupt at the moment of changing the pin INT1 state
Interrupt Priorities
It is not possible to predict when an interrupt will be required. For that reason, if several
interrupts
are enabled. It can easily occur that while one of them is in progress, another one is requested.
In such situation, there is a priority list making the microcontroller know whether to continue

operating or meet a new interrupt request.
The priority list consists of 3 levels:

1. Reset! The absolute master of the situation. If an request for Reset omits, everything is
stopped and the microcontroller starts operating from the beginning.

2. Interrupt priority 1 can be stopped by Reset only.

3. Interrupt priority 0 can be stopped by both Reset and interrupt priority 1.

Which one of these existing interrupt sources has higher and which one has lower priority is
defined in the IP Register (Interrupt Priority Register). It is usually done at the beginning of the
program. According to that, there are several possibilities:

* Once aninterrupt service begins. It cannot be interrupted by another interrupt at the
same or lower priority level, but only by a higher priority interrupt.

* If two interrupt requests, at different priority levels, arrive at the same time then the
higher priority interrupt is serviced first.

e If the both interrupt requests, at the same priority level, occur one after another, the
onewho came later has to wait until routine being in progress ends.

* If two interrupts of equal priority requests arrive at the same time then the interrupt to
be serviced is selected according to the following priority list :

1. External interrupt INTO

2. Timer O interrupt

3. External Interrupt INT1

4. Timer 1 interrupt

5. Serial Communication Interrupt

IP Register (Interrupt Priority)
The IP register bits specify the priority level of each interrupt (high or low priority).

X X 0 0 0 0 0 0 Value after reset

IP | | | pr2 [ps | pm1 | Px1 | PTO | Px0 | Bitname
bit7 bit6 bits bitd bit3 bit2 bit1 bit0

e PS-Serial Port Interrupt priority bit
1. PriorityO
2. Priority1

e PT1-Timer 1 interrupt priority
1. PriorityO
2. Priority1

e PX1 - External Interrupt INT1 priority
1. PriorityO
2. Priority1

* PTO-Timer O Interrupt Priority
1. PriorityO
2. Priority1

e PXO - External Interrupt INTO Priority

1. PriorityO
2. Priority1
Handling Interrupt

Once some of interrupt requests arrives, everything occurs according to the following order:
1. Instruction in progress is ended

2. The address of the next instruction to execute is pushed on the stack

3. Depending on which interrupt is requested, one of 5 vectors (addresses) is written to the
program counter in accordance to the following table:

Interrupt Source Vector (address)
IEO 3 h

TFO B h

TF1 1B h

RI, TI 23 h

All addresses are in hexadecimal format

4. The appropriate subroutines processing interrupts should be located at these addresses.
Instead of them, there are usually jump instructions indicating the location where the
subroutines reside.

5. When interrupt routine is executed, the address of the next instruction to execute is poped
from the stack to the program counter and interrupted program continues operating

from where it left off.

ADDRESSING MODES

The instructions of 8051 may be classified based on the source or destination type

1. Register addressing

2. Direct addressing

3. Register-indirect addressing

4. Immediate addressing

5. Base register plus index register indirect addressing

Register Addressing

Register addressing permits access to eight registers (RO—R7) of the register bank. There are
four banks of eight registers. One of the four banks is selected by a 2-bit field in PSW (Program
Status Word). Other registers used are A, B, AB and DPTR.

For example,

MOV A, Rn ;Move contents of register Rn to accumulator.

Hence, after the execution of this instruction, the registers Rn and A have the original contents
of register Rn.

Direct Addressing
In direct addressing, the address of the operand is specified in the instruction. Direct addressing
has operands as byte or bit. Direct addressing of byte provides operation on one of the

following.

1. Lower 128 bytes of internal data RAM
2. Special function registers

Direct bit addressing provides operation on the following.
1. 128 bits subset of internal data RAM (20H to 2FH)

2. 128 bits subset of special function register address space (80H to FFH)

L ECLY S Er = roegg ramrw rrees

BT e, Del S CT
AT e B
=~ TR
_-((..-—___ ECE o] el
rd e s
— |
e | T S
—~ N =100 (=
.H.
L s
s
-
el o S e
e | =
=
Flegesiaer bhamix 3
THE=
Aegisiar banmbk 2
=T
Flescpestesr baambe 1
s
Remge=Acer bhaemis O
=T o= b =

o B =1
pra L

Indirect Addressing

In this addressing, the address of the operand is not specified directly. Instead, the address of
the operand is specified as the contents of the register mentioned in the instruction. For
example, in the instruction MOV A, @Ri, the contents of register Ri give the address of the
location from where the operand is picked up. The above instruction causes the operand to be
picked up from the mentioned location for transfer to register A. The operation sequence has
been explained in Figure for the instruction MoV A, @RO.

R A, SR
FProgramrmes

FPEYW = O mamary
i.e. Register bank = O

(RO = SFH
(SEH) = 43

fAUTEEY o {FUORD ~1 EQH AT
« (HH) f'/
45H
s ¢ I DoH Py
|
) [B3k D
gt |"I.|- azH DFL
BoH
‘\'.
g
) _4aH | P
A~
__.-'"l. 3
#
s 20H
! Register bark 3
o # 184
L) | Register bank 2
i 10
!
1

Roegister bamk 1

b oasH
e Registar bark 3

'xL oz "2
M oc1H 1
SFH O0H A0

This type of instruction is useful when the same set of operations is performed on different
data sets stored in memory. In the present case either RO or R1 may be used for accessing the
locations within the 256 byte locations. However, register indirect addressing is also used for
accessing external data memory. The 16-bit pointer (DTPR) can be used for accessing any
location within the full 64 KB memory space.

Immediate Addressing

In this case the operand on which the operation has to be performed according to the
instruction, is specified in the instruction itself. For example, the instruction ADD A, #data, adds
the 8-bit data specified in the instruction to the contents of register A and the result is placed in
register A itself .

ADD A, #OFH AGD A,
OFH Programme
(AGGC) — (AGC) + OFH .~ : memory
«— 30H + OFH fl:'/ |
AFt ! 1
« dFH r_{
R
& = -'\‘- -': T
f -
(.. &
i 2 - <
e BRI 30H EOH ACC
D PSW
_______________________ BaH DPH
B2H DPL
BOH
30
20
Aagesier bank 3
BRI [T
Regisier bank 2
L 10H
Fiegsier bank 1
gl
Begisler bank d
02H R2
0iH R
o+ Ao

Base Register Plus Index Register Indirect Addressing

This is an indirect instruction used to access the program memory. In the instruction the
operand on which the operation is to be performed, is not specified directly. The summation of
contents of base register and index register determines the operand address. The DPTR or PC
register may act as the base register and register A acts as the index register. Thus the base
register (DPTR or PC) and the index register A are added to get the memory location. The

operand is the contents of the memory location calculated above. For example, the instruction
MOVC A, @ A+DPTR. moves a byte from a specified address to register A. The address of the
byte to be moved in register A is the sum of the original 8 bits of accumulator contents and 16
bits of base register (which is the DPTR). The operation sequence for instruction MOVC A,
@A+DPTR is explained in Figure BELOW.

MOVE &, & A« DPTR
4 56H QOEBOH Frooramme
(ACC) «— ({ACC)+ (DFTR)) ,”‘? :nu:ir-:lur‘:.'
= {02H + DETEH) i
— (OEBCH) " |
+— BbH P ‘K
N s |
|'I = I:l,
In' '.ll.
L 0zH ECH ACC
! _,--"A.-
: ale e
(+] DM PN
D
L GEH B3 DFH
TEH i DFL
804
304
NN It 4
Registar bank 3
i+
Registar bank 2
{104
Register bank 1
ogH
Registar bank 0
(z+H R2
olH Rl
JooH RO

8051 Assembly Language Programming
ARITHMETIC INSTRUCTION

Unsinged and signed Addition:

Number may be unsigned or signed number for addition signed numbers use 7th bit as a sign
it(MSB) remaining 0 to 6th bit, expresses the magnitude of the number for signed number 7th
bit shows one for negative sign and shows zero for positive sign.

Unsigned Addition

Unsigned numbers make use of the carry flag to detect when the reset an ADD operation is a
number larger than FFh. If the carry is set to 1 after an ADD, then the carry can be added to a
higher order byte. So that the sum is not lost,

For e.g.

Decimal Binary Hexa
97 01100001 61H
183 10110111 B7H
280 1)00011000 1) 18H
Signed Addition

Signed numbers may be added two ways additions of like signed number and addition of unlike
signed numbers. If unlike signed numbers are added then it is not possible for the result to be
larger than —128d or +127d, and the sign of the result will always be corrected.

ADD A, <src-bytes>

Function: ADD

Description: ADD adds the byte variables indicated to the accumulator, leaving the result in
the accumulator. The carry and auxiliary carry flags are set, respectively. If there is carry out
from bit-7 or bit-3, and cleared otherwise. When adding unsigned integers, the carry flag
indicates an overflow occurred.

When adding signed integers, OV indicates a negative number produced as the sum of two
positive operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed:

Register, direct, register-direct, immediate.

byte: 1 OR 2

cycle: 1

Example: The accumulator holds 89H (10001001B) and register 0 holds 95H (10010101B) .The
instruction,

ADD A, RO

Will leave 1E (00011110B) in the accumulator with the AC flag cleared and both the carry flag
and OV set to 1.

ADD A, direct
Operation: (A) <& (A) + (direct)

Example: ADD A, 20H: Adds contents of A and memory whose address is 20H and store
resultin A.

2 bytes instruction
1 machine cycle

ADD A, @Ri

Operation: (A) €& (A) + ((Ri))

Example: ADD A, @R2; Adds contents of A and memory whose address is given by register
R2, and stores result in A.

1 byte instruction

1 machine cycle

ADD A, #data

Operation: (A) ¢ (A) + #data

Example: ADD A, # 20H; Adds the contents of A and 20H.
2 bytes instruction

1 machine cycle

ADDC A, <src — byte>

Function: Add with carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the
accumulator contents, leaving the result in the accumulator. The carry and auxiliary — carry
flags

are set respectively, if there is a carry-out from bit-7 or bit-3 and cleared otherwise. When
adding

unsigned integers, the carry flag indicates an overflow occurred.

OV is set if there is a carry-out of bit-6 but now of bit-7, or a carry-out of bit-7 but not out of
bit-6;

Otherwise, OV is cleared. When adding signed integers, OV indicates a negative number
produced as the sum of two positive operands or a positive sum from two negative operands.
Four source operand addressing modes are allowed: register, direct, register — indirect, or
immediate.

BYTE: 1 OR 2
1 machine cycle

ADDCA, RO

Will leave 6EH (01101110B) in the accumulator with AC cleared and both the carry flag and
orsetto 1.

ADDCA, Rn

Operation: (A) <& (A) + (C) + (Rn)

1 byte instruction

1 machine cycle

ADDC A, direct

Operation: (A) € (A) + (C) + (direct)

Example: ADDC A, 20H; adds the contents of A, memory location whose address is 20H and
the carry flag and stores result in A.

2 bytes instruction

1 machine cycle

ADDCA, @Ri

Operation: (A) < (A) + (C) + ((Ri))

Example: ADDC A, @R2; Adds the contents of A, memory location whose address is given
by register R2 and the carry flag and stores result in the A.

1 byte instruction
1 machine cycle

ADDC A, #data

Operation: (A) < (A) + (C) + #data

Example: ADDC A, #20H; Adds the contents of A and carry flag and 20H and stores result
in A.

2 bytes instruction
1 machine cycle

SUBB A, <src-byte>

Function: Subtract with borrow.

Description: SUBB subtracts the indicated variable and the carry flag together from the
accumulator, leaving the result in the accumulator, SUBB sets the carry (borrow) flag if a
borrow is needed for bit-7 and clears otherwise. If C was set before executing a SUBB
instruction, this indicates that a borrow was needed for the previous step in a multiple
precision subtraction. So, the carry is subtracted from the accumulator along with the source
operandl. AC s set if a borrow is needed for bit 3 and cleared otherwise. OV is set if a borrow is
needed into bit-6, but Not into bit-7 or into bit but not bit-6.

When subtracting signed integers OV indicates a negative number produced when a negative
value is subtracted from a positive value or a positive result when a positive number is
subtracted from a negative number. The source operand allows four addressing modes:
register, direct, register-indirect, or immediate.

SUBB A, Rn

Operation: (A) < (A) = (C) —(Rn)

Example: SUBB A, R3; Subtracts contents of R3 and carry together from A and stores results
in A.

1 byte instruction

1 machine cycle

SUBB A, direct

Operation: (A) €& (A) — (C) — (direct)

Example: SUBB A, 20H; Subtracts the contents of memory location 20H and carry together
from A and stores result in A.

2 bytes instruction

1 machine cycle

SUBB A, @RI

Operation: (A) < (A) = (C) — ((Ri))

Example: SUBB A, @R2; subtracts the contents of memory location whose address is given
by R2 and carry together from A and stores result in A.

1 byte instruction

1 machine cycle

SUBB A, #tidata
Operation: (A) <& (A) — (C) - #data
Example: SUBB A, #20H; Subtracts 20H from A and stores result in A.

2 bytes instruction
1 machine cycle

Increment And Decrement Instruction$

INC<byte>

Function: Increment

Description: INC increment the indicated variable by 1. An original value of OFFH will

overflow to O0OH. No flags are affected. Three addressing modes are allowed. Register, direct or
register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

INCRn
Operation: (A) ¢ (A) +1
Rn - 5F

Before Execution After Execution

Rn Rn

SF 60

INC direct

Operation: INC

(direct) < (direct) +1

Add a 1 to content of the direct memory address. Assume initially the internal memory

location 25H contains data 60H. After executing INC 25H, the location will have the updated
value 26H.

2 bytes instruction.

1 machine cycle.

INC @Ri

Operation: ((Ri)) < ((Ri)) +1

Example: INC @ R1; increment contents of memory location whose address is given by
register R1 by 1.

Note :Ri may be RO or R1

Assume the pointer RO contains 42H and the internal memory location 42 contains 2AH.
After executing INC @ RO, the internal memory location 42H will have updated value 2BH.

1 byte instruction.

1 machine cycle.

INC DPTR

Function: Increment Data pointer

Description: Increment the 16-bit data pointers by 1. A 16-bit increment (modulo 216) is
performed; an overflow of the low order byte of the data pointer (DPL) from FFH to O0H will
increment the high-order byte DPH. No flags are affected.

Example: Registers DPH and DPL contain 12H and FEH respectively. The instruction
sequence,

INC DPTR

INC DPTR

INC DPTR

Will change DPH and DPL to 13H and 01H

Operation: (DPTR) ¢ (DPTR) + 1

1 byte instruction.

2 machine cycles.

DEC byte

Function: Decrement

Description: The variable indicate is decremented by 1. An original value of O0H will
underflow to OFFH. No flags are affected. Four operand addressing modes are allowed:
accumulator, register-direct, register-indirect.

Note: Register0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain
00H and 40H respectively. The instruction sequence,

DEC @RO

DECRO

DEC @RO

Will leave register 0 set to 7EH and internal RAM locations 7EH & 7FH and 7FH set to OFFH
and 3FH.

DECA

Operation: (A) < (A)-1

Subtract a 1from accumulator

Let us assume A = 23H, after executing the instruction DEC A, there will contain 22H.
1 byte instruction.

1 machine cycle.

DECRn

Operation: (Rn) ¢ (Rn)-1

Example: DEC R3; decrements the contents of R3 by 1

Before Execution After Execution
R3 R3
3E 3D

1 byte instruction.
1 machine cycle

DEC direct

Operation: (direct) ¢ (direct) —1

Example: DEC 20H; decrements the contents of memory location whose address is 20H
by 1.

2 bytes instruction.

1 machine cycle

DEC @Rn

Operation: ((R1)) < ((Ri))—1

Example: DEC @R2; decrements the contents of memory location whose address is given by
register R2 by 1.

1 byte instruction.

1 machine cycle.

Note:

1. No math flags are affected.

2. All 8-bit address contents overflow FFh to 00h.

3. DPTR is 16-bit; DPTR overflows from FFFFh to 0000h.

4. The 8-bit address contents underflow from 00h to FFh.

5. There is no DEC DPTR to match the INC DPTR.

MULTIPLICATION AND DIVISION

MUL AB

Function: Multiply

Description: MUL AB the unsigned eight bit integers in the accumulators and register B. The
low-order byte of the sixteen-bit product is left in the accumulator and the high-order byte in B.
If the product is greater than 255(FFH) the overflow flag is set; otherwise it is cleared. The carry
flag is always cleared.

Example: Originally, the accumulator holds the value 80(50H). Register B holds the value
160(0A0H).

The instruction,

MUL AB

Will give the product 12,800(3200H), 80B is changed to 32H (00110010B) and the accumulator
is cleared. The overflow flag is set, carry is cleared.

Operation: (A), 5 < (A) X (B)

(B)ss
A = 58H
B = 11H
Before Execution After Execution
A B A B
58 11H D8 05
MOV A, #12
MOV B, #05
MUL AB
;A=5A; B=00

1 byte instruction.
4 machine cycles.

DIV AB

Function: Divide

Description: DIV AB divides the unsigned eight bit integer in the accumulator by the unsigned
eight-bit integer in register B. The accumulator receives the integer part of the quotient;
register B receives the integer remainder. The carry and or flags will be cleared.

Exception if B had originally contained 00H, the values returned in the accumulator and
B register will be undefined and the overflow flag will be set. The carry flag is cleared in any
case.

Example: The accumulator contains 250(0FBH or 11111010B) and B contains 18(12H or
00010010B). The instruction,

DIV AB

Will leave B in the accumulator (ODH or 00001101B) and the value 16(10H or 00010000B) in
B. Since, 250 = (13 x 18) + 16 carry and OV will both be cleared.

Logical Instructions
Logical AND

ANL destination, source: ANL does a bitwise "AND" operation between source and destination,
leaving the resulting value in destination. The value in source is not affected. "AND" instruction
logically AND the bits of source and destination.

ANL A,#DATA ANLA,Rn

ANL ADIRECT ANL A,@Ri

ANL DIRECT,A ANL DIRECT, #DATA

Logical OR
ORL destination, source; ORL does a bitwise "OR" operation between source and destination,

leaving the resulting value in destination. The value in source is not affected. " OR " instruction
logically OR the bits of source and destination.

ORL A,#DATA ORL A, Rn

ORLA,DIRECT ORLA,@Ri

ORL DIRECT,A ORL DIRECT, #DATA

Logical Ex-OR
XRL destination, source: XRL does a bitwise "EX-OR" operation between source and
destination, leaving the resulting value in destination. The value in source is not affected.

" XRL" instruction logically EX-OR the bits of source and destination.

XRL A,#DATA XRL A,Rn

XRL A,DIRECT XRL A,@Ri

XRL DIRECT,A XRL DIRECT, #DATA

Logical NOT

CPL complements operand, leaving the result in operand. If operand is a single bit then the
state of the bit will be reversed. If operand is the Accumulator then all the bits in the
Accumulator will be reversed.

CPL A, CPL C, CPL bit address

SWAP A — Swap the upper nibble and lower nibble of A

Rotate Instructions

RRA

This instruction is rotate right the accumulator. Its operation is illustrated below. Each bit is
shifted one location to the right, with bit 0 going to bit 7.

RLA
Rotate left the accumulator. Each bit is shifted one location to the left, with bit 7 going to bit 0

= O O =S =0
7 & S:-4 3 2 % O

ACC

RRCA
Rotate right through the carry. Each bit is shifted one location to the right, with bit 0 going into
the carry bit in the PSW, while the carry was at goes into bit 7

I B DN T D D T T O
C 7 6 5 4 3 2 1 0
ACC

RLCA
Rotate left through the carry. Each bit is shifted one location to the left, with bit 7 going into the
carry bit in the PSW, while the carry goes into bit 0.

E3—F— 3 3 -+ - - - -| -}

. T 6 % 43 X3 0
ACC

Branch (JUMP) Instructions

Jump and Call Program Range

There are 3 types of jump instructions. They are:-

1. Relative Jump

2. Short Absolute Jump

3. Long Absolute Jump

Relative Jump

Jump that replaces the PC (program counter) content with a new address that is greater than
(the address following the jump instruction by 127 or less) or less than (the address following
the jump by 128 or less) is called a relative jump. Schematically, the relative jump can be shown
as follows: -

» -

Relatree
JUmp Naot
range - INstruction

Jump Instruction
PR <A . e e

The advantages of the relative jump are as follows:-

1. Only 1 byte of jump address needs to be specified in the 2's complement form, ie. For
jumping ahead, the range is 0 to 127 and for jumping back, the range is -1 to -128.

2. Specifying only one byte reduces the size of the instruction and speeds up program
execution.

3. The program with relative jumps can be relocated without reassembling to generate
absolute jump addresses.

Disadvantages of the absolute jump: -
1. Short jump range (-128 to 127 from the instruction following the jump instruction)

Instructions that use Relative Jump

SJMP <relative address>; this is unconditional jump
The remaining relative jumps are conditional jumps
JC <relative address>

JNC <relative address>

JB bit, <relative address>

JNB bit, <relative address>

JBC bit, <relative address>

CJNE <destination byte>, <source byte>, <relative address>
DJNZ <byte>, <relative address>

JZ <relative address>

IJNZ <relative address>

Short Absolute Jump
In this case only 11bits of the absolute jump address are needed. The absolute jump address is
calculated in the following manner.

In 8051, 64 kbyte of program memory space is divided into 32 pages of 2 kbyte each. The
hexadecimal addresses of the pages are given as follows:-

Page (Hex) Address (Hex)
00 0000 - 07FF
01 0800 - OFFF
02 1000 - 17FF
03 1800 - 1FFF
1E FOOO - F7FF
1F F800 — FFFF

It can be seen that the upper 5bits of the program counter (PC) hold the page number and the
lower

11bits of the PC hold the address within that page. Thus, an absolute address is formed by
takingpage numbers of the instruction (from the program counter) following the jump and
attaching the specified 11bits to it to form the 16-bit address.

Advantage: The instruction length becomes 2 bytes.
Example of short absolute jump: -

ACALL <address 11>

AJMP <address 11>

Long Absolute Jump/Call

Applications that need to access the entire program memory from 0000H to FFFFH use long
absolute jump. Since the absolute address has to be specified in the op-code, the instruction
length is 3 bytes (except for IMP @ A+DPTR). This jump is not re-locatable.

Example: -

LCALL <address 16>

LJMP <address 16>

JMP @A+DPTR

Another classification of jump instructions is
1. Unconditional Jump

2. Conditional Jump

1. The unconditional jump is a jump in which control is transferred unconditionally to the target
location.

a. LIMP (long jump). This is a 3-byte instruction. First byte is the op-code and second and third
bytes represent the 16-bit target address which is any memory location from 0000 to FFFFH
eg: LIMP 3000H

b. AJMP: this causes unconditional branch to the indicated address, by loading the 11 bit
address to

0 -10 bits of the program counter. The destination must be therefore within the same 2K
blocks.

c. SIMP (short jump). This is a 2-byte instruction. First byte is the op-code and second byte is
the relative target address, 00 to FFH (forward +127 and backward -128 bytes from the current
PC value). To calculate the target address of a short jump, the second byte is added to the PC
value which is address of the instruction immediately below the jump

2. Conditional Jump instructions.

JBC Jump if bit = 1 and clear bit
IJNB Jumpifbit= 0
JB Jumpifbit = 1
INC JumpifCY =0
JC JumpifCY =1

CJNE reg,#data Jump if byte # #data

CJNE A,byte Jump if A # byte

DINZ Decrement and Jump if A#0
INZ Jumpif A0
14 JumpifA= 0

Bit level jump instructions:
Bit level JUMP instructions will check the conditions of the bit and if condition is true, it jumps
to the address specified in the instruction. All the bit jumps are relative jumps.

JB bit, rel ; jump if the direct bit is set to the relative address specified.
JNB bit, rel ; jump if the direct bit is clear to the relative address specified.
JBC bit, rel ; jump if the direct bit is set to the relative address specified and then clear the bit.

Subroutine CALL And RETURN Instructions

Subroutines are handled by CALL and RET instructions

There are two types of CALL instructions

1. LCALL address(16 bit)

This is long call instruction which unconditionally calls the subroutine located at the indicated
16 bit address. This is a 3 byte instruction. The LCALL instruction works as follows.

a. During execution of LCALL, [PC] = [PC]+3; (if address where LCALL resides is say, 0x3254;
during execution of this instruction [PC] = 3254h + 3h = 3257h

b. [SP]=[SP]+1; (if SP contains default value 07, then SP increments and [SP]=08

c. [[SP]] = [PC7-0]; (lower byte of PC content ie., 57 will be stored in memory location 08.

d. [SP]=[SP]+1; (SP increments again and [SP]=09)

e. [[SP]] = [PC15-8]; (higher byte of PC content ie., 32 will be stored in memory location 09.
With these the address (0x3254) which was in PC is stored in stack.

f. [PC]= address (16 bit);the new address of subroutine is loaded to PC. No flags are affected.
2. ACALL address(11 bit)

This is absolute call instruction which unconditionally calls the subroutine located at the
indicated 11 bit address. This is a 2 byte instruction. The SCALL instruction works as follows.

a. During execution of SCALL, [PC] = [PC]+2; (if address where LCALL resides is say, 0x8549;
during execution of this instruction [PC] = 8549h + 2h = 854Bh

b. [SP]=[SP]+1; (if SP contains default value 07, then SP increments and [SP]=08

c. [[SP]] = [PC7-0]; (lower byte of PC content ie., 4B will be stored in memory location 08.
d. [SP]=[SP]+1; (SP increments again and [SP]=09)

e. [[SP]] = [PC15-8]; (higher byte of PC content ie., 85 will be stored in memory location 09.
With these the address (0x854B) which was in PCis stored in stack

f. [PC10-0]= address (11 bit); the new address of subroutine is loaded to PC. No flags are
affected.

RET instruction

RET instruction pops top two contents from the stack and load it to PC.

g. [PCis-g] = [[SP]] ;content of current top of the stack will be moved to higher byte of PC.
h. [SP]=[SP]-1; (SP decrements)

i. [PCs-0] = [[SP]] ;content of bottom of the stack will be moved to lower byte of PC.

j- [SP]=[SP]-1; (SP decrements again)

1/0 Port Programming

Provides
+5V supply
voltage to
8051 Pin Diagram [the chip
(p1o =1 1 40 =1 Ve
Atotal of 32 PL.1 £ 2 39 =3 P0.0 (ADO))
pins are set P12] 3 zb 1 P0.1 (AD1)
¥ : P13 = 4 37 /1 P0.2 (AD2)
aside for the Pl < —R 3 =3 03409 . pg
four ports PO, 15 =1 6 35 =3 P0.4 (AD4) :
16 B 7 34 I P0.5 (ADS)
Pl, P2, P3, P17 =1 3 8051 = =1 0.6 (AD6)
where each RST B 9 (80’31) 32 =1 P0.7 (ADT/
port takes 8 (RxD) P20 =] 10 - 31 == -EANVPP
: Txp) Pl B 11 (89470) 30 =1 ALE/PROG
puis (-INTO) P32 =1 12 <Y/ 29 =1 -PSEN
<(-I.\IT1) P33 28 0 P2.7 (A15)
(To) P3.4 =1 14 27 =] P2.6(Al4)
THr3s B 15 26 =1 P2.5(A13)
-WR)P2s 1 16 25 [P2.4 (A12) > P2
(_(-RD)P37 = 17 24 [P2.3 (All) m
XTAL2 £ 13 23 =1 P22 (A10)
XTALl B4 19 22 =1 P2.1 (A9)
ND = 20 21 (=] P20 (A8)

e

* The four 8-bit I/O ports PO, P1, P2 and P3 each uses 8 pins.

e All the ports upon RESET are configured as output, ready to be used as output ports.

* Touse all these ports as an input port, it must be programmed. Means all the bits of the
port are needed to be written 1 on them.

PORT 0:

Port 0 has 8 pins P0.0, P0.1, P0.2, P0.3, P0.4, PO.5, PO.6, and P0.7, pins 39, 38, 37, 36, 35, 34, 33,
32. This port can be used for input or output. Each pin of the port 0 must be connected
externally to a 10K Ohm pull-up resistor, to use Port 0 as both input or output ports. This is
because the Port 0 [PO] is an open drain. This is not the case in other ports P1, P2 and P3. 'Open
drain' is a term used for MOS chips, as 'open collector' is used for TTL chips. To use Port O for
both input and output, have to connect Port 0 to pull-up resistors. When external pull-up
resistors connected upon reset, Port 0 is configures as output port.

Role of Port 0 as Input Port:

To make Port 0 as input port, the pull up resistors are connected to port 0. The port must be
programmed by writing 1 to all the bits. Lets examine the code example below in which the
Port 0 is configured first as an input port by writing 1's to it and then data is received from that
port and send to Port 1 [P1].

MOV A #0FFH ;Lm?d accumulator with value FFH in hex or 255 in
decimal

H[W Pﬂ,A ;Make Port 0 as an input port by writing all 1's to it

ET’{'I:]“- L :Get data from Port 0

MOV P1,A :Send it to Port 1
SJMP BACK ;Keep doing it repeatedly

The Dual Role of Port 0:

Port O can be used to configures for both data and address. The Port 0 is also designated as ADO
- AD7. When connecting an 8051 to an external memory, port O provides both address and
data. The 8051 multiplexes address and data through Port O to save pins. Address latch enable
[ALE] indicates if Port 0 has address or data. When ALE=0, it provides data DO - D7, but when
ALE =1, it has address AO - A7. With the help of 74LS373 latch, ALE is used for demultiplexing
address and data.

PORT 1:

Port 1 has a total of 8 pins. P1.0, P1.1, P1.2, P.13, P1.4, P1.5, P1.6, and P1.7. Port 1 can be use
as an input or output. As compares to Port 0, this port does not need any pull-up resistors. Port
1 already has internally connected pull-up resistors. Port 1 is configured as a output port when
reset.

Example # 1:

Lets examine the code, which will continuously send Output to Port 1 the alternating values
55H and AAH

MOV A #55H
BACK MOV P1,A
ACALL DELAY
CPL A

SJMP BACK

The Role of Port 1 as Input Port:

The Port 1 must be programmed by writing 1's to all thr bits in order to make Port 1 as an input
port.

EXAMPLE-2

MOV A #0FFH
MOV P1,A
MOV A,P1
MOV R3,A
ACALL DELAY

: Load Accumulator with FFH in hex
;Make P1 an input Port, by writing all 1's to Port 1
:Get data from Port 1

; Save data in register R3

MOV A,P1
MOV R4,A
ACALL DELAY

:Get another data from Port 1

; Save data in register R4

MOV A,P1
MOV R3,A

In Example # 2 above, the Port 1 is configures as input port by writing 1's to it, then data is
received from that port and saved in R3, R4 and R5

PORT 2:

Port 2 also has total of 8 pins. P2.0, P2.1, P2.2, P2.3, P2.4, P2.5, P2.6, and P2.7. Port 2 can be
used for input or output port. To make Port 2 as an input, the Port 2 must be programmed by
writing 1's to all bits.

:Get another data from Port 1

; Save data in register RS

Example # 3:

BACK: MOV P2,A
ACALL DELAY

CPLA
SJMP BACK

In Example # 3 above, the code will send out continuously to Port 2 an alternating values 55H
and AAH to toggle the bits or Port 2 continuously.
The Role of Port 2 as an Input Port:

The Port 2 must be programmed by writing 1's to all the port 2 bits to make Port 2 as an input
port.
Example #4:

MOV A #0FFH :Load accumulator with value 0FFH in hex

MOV P2,A :Make Port 2 an input port by writing 1s to all bits of port

2
E':]{;“: L :Get data from Port 2

MOV P1,A :Send data to Port 1
5JMP BACK ;Keep doing it repeatedly

In Example # 4 above, the Port 2 is configures as input port by writing all 1's, then data is
received from that port and is sent to Port 1 continuously.

The Dual Role or Port 2:

Port 2 has dual role. Port 2 is also designated as A8 - A15. This indicates that Port 2 has a dual
function. An 8031 microcontroller is capable of accessing 64K bytes of external memory, it
needs a path for the 16 bits of the address. PO provides the lower 8 bits via A0 - A7 while Port 2
provides bits A8 - A15 of the address. When the 8031 is connected to external memory, Port 2
is used for the upper 8 bits of the 16-bit address, and it cannot be used for input / output
operations.

Port 3:

Port 3 has total 8 Pins. P3.0, P3.1, P3.2, P3.3, P3.4, P3.5, P3.6, and P3.7. Pins 10, 11, 12, 13, 14,
15, 16, and 17. Port 3 can be sued as an input port or output port. Port 3 does need any pull-up
resisters, just like the Port 1 and Port 2 does not require pull-up resistors. Only Port O require
Pull-up resistors. Port 3 configured as an output port upon system reset. Port 3 has additional
function of providing signals of interrupts.

Alternate Functions of Port 3:

PORT 3 BIT FUNCTION

RxD [Receive Serial Communications Signals]

TxD [Transmit Serial Communications Signals]

iz
I L
P31 s Sttt |

Serial Communication

BASICS OF SERIAL COMMUNICATION:

Computers transfer data in two ways:
Parallel:

» Often 8 or more lines (wire conductors) are used to transfer data to a device that is only
a few feet away.

Serial:
» To transfer to a device located many meters away, the serial method is used
* The data is sent one bit at a time.

Serial Transfer Parallel Transfer
DO

® cecover [l s

Receiver

D7

> At the transmitting end, the byte of data must be converted to serial bits using parallel-
in-serial-out shift register.

> At the receiving end, there is a serialin- parallel-out shift register to receive the serial
data and pack them into byte.

> When the distance is short, the digital signal can be transferred asitison a
simple wire and requires no modulation.

> If data is to be transferred on thetelephone line, it must be convertedfrom 0s and 1s to

audio tones.
1. This conversion is performed by a device called a modem,

“Modulator/demodulator”.

Serial data communication uses two methods
1. Synchronous method transfers a block of data at a time

2. Asynchronous method transfers a single byte at a time

It is possible to write software to use either of these methods, but the programs can be tedious
and long There are special IC chips made by many manufacturers for serial communications.
UART (universal asynchronous Receivertransmitter) USART (universal synchronous
asynchronous Receiver-transmitter).

> If data can be transmitted and received, it is a duplex transmission
> |f data transmitted one way a time, it is referred to as half duplex
> |f data can go both ways at a time, it is full duplex.

Simplex Transmitter —»| Receiver

Half g ,

alf Duplex Transmitter - /| Receiver
Receiver |~ Transmitter

Full Duplex Transmitter -| Receiver

Receiver Transmitter

Asynchronous serial communication and data framing

The data coming in at the receiving end of the data linc in a serial data
transfer is all Os and 1s: it is difficult to make sense of the data unless the sender
and receiver agree on a set of rules, a protocol, on how the data is packed, how
many bits constitute a character, and when the data begins and ends.

Start and stop bits

Asynchronous serial data communication is widely used for
character-oricnted transmissions, while block-oriented data transfers usc the syn-
chronous method. In the asynchronous method, each character is placed between
start and stop bits. This is called framing, In data framing for asynchronous com-
munications, the data, such as ASCII characters, are packed between a start bit and
a stop bit. ?‘hc start bit is always one bit, but the stop bit can be one or two bits.
The .start bit is always a 0 (low) and the stop bit(s) is 1 (high). For cxample, look
at Figure 10-3 in which the ASCIl character “A” (8-bit binary 0100 0001) is
?aTcd between the start bit and a singlc stop bit. Notice that the LSB is sent out
irst,

.“‘ ° o ‘»
stop : :;
e [bit i 0 0 0 : 0 11 s:)anrt mark:
goes outlast D7 | e TR e R R s
D0 goes out first

> The rate of data transfer in serial data communication is stated in bps (bits per

second)
> Another widely used terminology for bps is baud rate
> |tis modem terminology and is defined as the number of signal changes per second

> |In modems, there are occasions when a single change of signal transfers several bits of

data
As far as the conductor wire is concerned, the baud rate and bps are the same, and we

use the terms interchangeably.

RS232 standards

To allow compatibility among data communication equipment made by
various manufacturers, an interfacing standard called RS232 was set by the
Electronics Industries Association (EIA) in 1960. In 1963 it was modified and
called RS232A. RS232B and RS232C were issued in 1965 and 1969, respective-
ly. In this book we refer to it simply as RS232. Today, RS232 is the most widely
used serial I/0 interfacing standard. This standard is used in PCs and numerous
types of equipment. However, since the standard was set long before the advent of
the TTL logic family, its input and output veltage levels are not TTL compatible,
In RS232, a 1 is represented by =3 to -25 V, while a 0 bit is +3 to +25 V, making
-3 10 +3 undefined. For this reason, to connect any RS232 to a microcontroller sys-
tem we must use voltage converters such as MAX232 to convert tl'!c TTL logic
levels to the RS232 voltage levels, and vice versa. MAX232 IC ghlp; are com-
monly referred to as line drivers. RS232 connection to MAX232 is discussed in

Section 10.2.

RS232 DB-25 Pms

= — T
1 Protective ground 14 Secondary transmitted data

2 Transmitted data (TxD) 15 Transmitted signal element timing
3 ‘Received data (RxD) 16 Secondary receive data

4 Request to send (-RTS) 17 Receive signal element timing

5 Clear to send (-CTS) 18 Unassigned

[Data set ready (-DSR) 19 Secondary receive data

7 Signal ground (GND) 20 Data terminal ready (-DTR)

8 Data carrier datect (-DCD) 21 Signal quality detector

9/10 Reserved for data testing 22 Ring indicator (RI)

11 Unassigned 23 Data signal rate select

12 Secondary data camier detect 24 Transmit signal element timing
13 Secondary clear to send 25 Unassigned

Current terminology classifies data communication equipment as
» DTE (data terminal equipment) refers to terminal and computers that send and
receive data
* DCE (data communication equipment) refers to communication equipment, such
as modems
* The simplest connection between a PC and microcontroller requires a minimum
of three pins, TxD, RxD, and ground

DTR (data terminal ready)

When terminal is turned on, it sends out signal DTR to indicate that it is ready for
communication

DSR (data set ready)

When DCE is turned on and has gone through the self-test, it assert DSR to

indicate that it is ready to communicate

RTS (request to send)

When the DTE device has byte to transmit, it assert RTS to signal the modem that it
has a byte of data to transmit.

CTS (clear to send)

When the modem has room for storing the data it is to receive, it sends out signal CTS
to DTE to indicate that it can receive the data now

DCD (data carrier detect)
The modem asserts signal DCD to inform the DTE that a valid carrier has been
detected and that contact between it and the other modem is established

RI (ring indicator)

An output from the modem and an input to a PC indicates that the telephone is ringing
It goes on and off in synchronous with the ringing sound.

A line driver such as the MAX232 chip is required to convert RS232 voltage levels to TTL levels,
and vice versa. 8051 has two pins that are used specifically for transferring and receiving data
serially
» These two pins are called TxD and RxD andare part of the port 3 group (P3.0 and P3.1)
e These pins are TTL compatible; therefore, they require a line driver to make them RS232
compatible

We need a line driver (voltage converter) to convert the R232’s signals to TTL voltage levels that
will be acceptable to 8051’s TxD and RxD pins

vee |—————— MAX?232 requires

15 PR — four capacitors
. ' MAX232
c1
L | i 6 _‘LIC“ 8051
= L * MAX232
i — 3 = P3.1| 11 11 N
=D 14 2 |3
Tiin Tlout =
11 [“\4 14
Rlout L_,1 R1lin P3.0| 10 12 = 2
12 <] 12 RxD |
0 T2in . T2out] S
| _ \ DB-9
N R2out ./"l R2int .
MAX232 has two

RS232 side

— .

TTL side 15

sets of line drivers

To allow data transfer between the PC and an 8051 system without any error, we must make
sure that the baud rate of 8051 system matches the baud rate of the PC’'s COM port
Hyperterminal function supports baud rates much higher than listed below

PC Baud Rates

110
150
300
600
1200
2400
4800

9600

19200 Baud rates supported by
486/Pentium IBM PC BIOS

SBUF :

It is an 8-bit register used solely for serial communicationFor a byte data to be transferred via
the TxD line, it must be placed in the SBUF Register The moment a byte is written into SBUF, it
is framed with the start and stop bits and transferred serially via the TxD line SBUF holds the
byte of data when it is received by 8051 RxD line .When the bits are received serially via RxD,
the 8051 deframes it by eliminating the stop and start bits, making a byte out of the data
received, and then placing it in SBUF

MOV SBUF, #'D' ;load SBUF=44h, ASCII for ‘D’

MOV SBUF, L& ;ocopy accumulator into SBUF
MOV A, 3BUF ;copy SBUF into accumulator
SCON

It is an 8-bit register used to program the start bit, stop bit, and data bits of data framing,
among other things.

SMO SCONM.7 Serial port mode specifier
SM1 SCON.6 Serial port mode specifier
SM2 SCON.5 Used for multiprocessor communication
EEN SCONA4 Set/cleared by software to enable/dizable reception
TBS SCON.3 Not widely nsed
RB8 SCON2 Not widely nsed
TI SCON.1 Transmit interrupt flag. Set by HW at the
begin of the stop bit mode 1. And cleared by STW
EI SCON.O Beceive interrupt flag. Set by HW at the

begin of the stop bit mode 1. And cleared by SW

Note: Malke 5M2, TBS, and RBE =0

SMO0, SM1
They determine the framing of data by specifying the number of bits per character,
and the start and stop bits

SMO SM1
0 0 Serial Mode 0
0 1 Serial Mode 1, 8-bit data,
1 stnpq(f, 1 start bit
1 0 Serial Mod&2______ .
1 1 Serial Mode 3 Enl' L=
of interest to us

KA~
SM2

This enables the multiprocessing capability of the 8051

REN (receive enable)

It is a bit-adressable register. When it is high, it allows 8051 to receive data on RxD pin. If low,
the receiver is disable

Tl (transmit interrupt)

When 8051 finishes the transfer of 8-bit character. It raises Tl flag to indicate that it is ready to
transfer another byte. Tl bit is raised at the beginning of the stop bit

RI (receive interrupt)

When 8051 receives data serially via RxD, it gets rid of the start and stop bits and places the
byte in SBUF register. It raises the Rl flag bit to indicate that a byte has been received and
should be picked up before it is lost. Rl is raised halfway through the stop bit

PIN DIAGRAM OF 8255 A

PA3 |1 40 | PA4
PA2 |2 39|PAS
PA1|(3 38| PAG
PAO |4 37| PA7
RD |5 36 |WR
cSle 35|RESET
gnd |7 34| po
A1ls 33|D1
A0 |9 32|D2

PC7(10 g255 31|D3
pcel11 PPl 3p|D4

PCS5 (12 29 (D5
PC4 (13 28| D6
PCO 14 27|D7
PC1(15 26 |Vcee
PC2 |16 25| PB7
PC3 |17 24 | PB6
PBO |18 23|PBS
PB1|19 22 |PB4
PB2 (20 21|PB3

DATA BUS (PIN27-PIN34):

There bi-directional, tri state data bus lines are connected to the system data bus. They are
used to transfer data and control word from microprocessor (8085) or Microcontroller (8051)
to

8255 or to receive data or status word from 8255 to the 8051 and 8085.

PORT A (PAO — PA) [Pin 1-4 & Pin 37-40]:

There 8 bit bi-directional Input/Output pins are used to send data to output device and to
receive data from input device. It functions as an 8bit data output latch / buffer, when used in
output mode and an 8bit data input buffer, when used in input mode.

PORT B (PBO-PB7) (PIN18-PIN25):

There 8bit bi-directional input pins are used to send data to output device and to receive data
from input device. It functions as 8bit data output latch/buffer when used in output mode and
on 8bit data in input buffer — when used in input mode.

PORT C (PCO-PC7) (PIN10-PIN17):

There 8bit bi-directional input pins are divided into two groups PCL(PC3-PC0)and PC4(PC7-PC4)
these groups individually can transfer data in or out when transformed for simple inputs and
used as handshake signals when transformed for handshake for bi-directional modes.

RD (read) (pin5):

When this pin is low, the CPU can read the data in the ports or the states word through the

data buffer.

WR (write) (pin 36):

When this pin is low the CPU can write the data on the ports or in the control register

through the data bus buffer.

CS (chip select) (pin 6):

This is an active low input which can be enabled for data transfer operator between the CPU

and the 8255.

RESET (pin 35):

This is an active high input used to reset 8255, when reset input is high the control register

is cleaned and all the ports are set to the input mode. Usually reset output signal from 8085 or

8051 is used to reset 8255.

A0 and A1l (Pin8, 9):

These input signal and along with read and write inputs control the selection of the control/

states word register or one of the three parts A0 and Al are generally connected to the A0 ,Al

pins

of the address bus; the 8255 therefore occupies from consecutive location in the input space
Ports and Registor Select Signals

A, A, RD WR CcSs QOperation
0 0 0 1 0 I/P (Read) Operation
PORT A te data bus
0 1 0 1 0 I/P (Read) Operation
PORT B to data bus
1 0 0 1 0 I/P (Read) Operation
PORT C to data bus
0 0 1 0 0 O/P (Write) Operation
Data bus to PORT A
0 1 1 0 0 O/P (Write) Operation
Data bus to PORT B
1 0 1 0 0 O/P (Write) Operation
Data bus to PORT C
1 1 1 0 0 O/P (Write) Operation
Data bus to control register
X % X X 1 Disable Function
Data bus Tri-stated
1 1 0 1 0 Disable Function
lllegal condition
X X 1 1 0 Disable Function
Data bus Tri-stated

Data Bus Buffer

This three state bi-directional 8bit buffer is used to interface the 8255 to the system data bus.
Data is transmitted or received by the buffer upon execution of input or output instructions
by the CPU. Control words and status informations are also transferred through the data bus
buffer

READ/WRITE AND CONTROL LOGIC

The function of this block is to manage all of the internal and external transfers of both data
and Control or status words. It accepts input from the CPU Address and Control busses and in
turn, issues commands to both of the Control Groups.

(CS) Chip select: A “low” on this input pin enables the communication between the 8255 and
the CPU.

(RD) Read: A “low” on this input pin enables 8255 to send the data or status information to

the CPU on the data bus. In essence, it allows the CPU to “read from” the 8255.

(WR) Write: A ”low” on this input pin enables the CPU to write data or control words into

the 8255.

Power —» +5V Group A 10
. rtA PA7-P.
supplies — »GND = Group A <: <:> DC(>8) §:> A7T-PAO
control
[
v
Gro#t]%A Vo
Bl-Dirctional K——) Doer [—— PcrPcs
data bus (4)
S Data bus <
b <:> buffer
8-Bit GrongB 1o
i Internal | :’) po G ‘::" >P 0
data bus '0(‘2’?" < C3-PC
I 4
RD ——»9
WR——»qd Read Group B <:
write » Group B 1o
Al ——| control p
control 4 3 portB K >PB7=PB0O
A0 ——» |ogic (G
Reset —b| |
[

s £
CS

READ AND WRITE CONTROL LOGIC
(A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the RD
and WR inputs, control the selection of one of the three ports or the control word register.
They
are normally connected to the least significant bits of the address bus. (A0 and A1).

(RESET) Reset: A “high” on this input initializes the control register to 9Bh and all ports (A,
B, C) are set to the input mode.

A, A, Selection
0 0 Port a
0 1 Port b
1 0 Port ¢
1 1 control

Group A And Group B Controls

The functional configuration of each port is programmed by the system software. In essence,
the CPU “outputs” a control word to the 8255. The control word contains information such as
"mode”, "bit set”, etc. That initializes the functional configuration of the 8255.Each of the
Control blocks(GROUP A and GROUP B)accepts “commands” from the Read/Write control logic,
receives “control words” from the internal data bus and issues the proper commands to its
associated ports.

PORTSA,BandC

The 8255 contains three 8-bit ports (A, B and C)all can be configured to a wide variety

of functional characteristics by the system software but each has its own special features or
“personality” to further enhance the power and flexibility of the 8255.

PORTA

One 8-bit data output latch/buffer and one 8-bit data input latch. Both “Pull-up” and
“Pulldown” bus-hold devices are present on the Port A.

PORTB

One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

PORTC

One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input). This
port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit
latch and it can be used for the control signal output and status signal inputs in conjunction
with ports A and B.

OPERATION MODES

Bit set-reset (BSR) Mode

The individual bits of Port C can be set or reset by sending out a single OUT instruction to the
control register. When Port Cis used for control/status operations features can be used to set
or reset individual bits.

1/0 Modes

Mode 0 : Simple Input/Output.

In this mode, ports A and B are used as two simple 8-bit I/O ports and Port C as two 4-bit

ports. Each port (or half port, in case of C) can be programmed to function as simply an input
port or an output port. The input/output features in Mode 0 are as follows

1. Outputs are latched.

2. Input are buffered, not latched.

3. Ports do not have handshake or interrupt capability

Mode 1: Input/Output with handshake

In this mode, input or output data transfer is controlled by hand shaking signals. Handshaking
signals are used to transfer data between devices whose data transfer speeds are not same. For
example, computer can send data to the printer with large speed but printer can’t accept data
and print data with this rate.

Corrmp uter Primter

Y

L]

BlLIS™

So, computer has to send data with the speed with which printer can accept. This type of
data transfer is achieved by using hand shaking signals along with data signals. Fig 8.3 shows
data transfer between computer and printer using handshaking signals.
These handshaking signals are used to tell computer whether printer is ready to accept the
data or not. If printer is ready to accept the data, then after sending data on data bus,
computer
uses another handshaking signal (STB) to tell printer that valid data is available on the data
bus.
The 8255 mode 1 which supports handshaking has following features.

« Two ports (A and B) functions as 8-bit I/O ports. They can be configured either as input
or as output ports.

* Each port uses three lines from port C as handshake signals. The remaining two lines of
port C can be used for simple 1/0 function.

* Input and output data are latched.

e Interrupt logic is supported.

Mode 2: Bi-directional I/O data transfer

This mode allows bi-directional data transfer (transmission and reception) over a single 8-bit
data bus using handshaking signals. This feature is available only in Group A with Port A as

the 8-bit bidirectional data bus and PC3— PC7 are used for handshaking purpose. In this mode,
both inputs and outputs are latched. Due to use of a simple 8-bit data bus for bidirectional data
transfer, the data sent out by the CPU through Port A appears on the bus connecting it to the
peripheral, only when the peripherals requests it. The remaining lines of Port Ci.e., PCO — PC2
can be used simple I/O function. This Port B can be programmed in mode 0 or in mode 1. When
Port A is programmed in mode 1, PCO - PC2 lines of Ports C are used as hand shaking signals.
CONTROL WORD FORMATS

A high on the RESET pin causes all 24 lines of the three 8-bit ports to be in the input mode. All
flip flops are cleared and the interrupts are reset. This condition is maintained even after the
RESET goes low. The ports of the 8255 can then be programmed for any other mode by writing
a single control word into the control register, when required.

Control word
| o7 | pe | bps | b4 | D3 | D2 | D1 | Do |

| | |
X X x| Bit set/reset
| 1 = set

Don't 0 = reset

care
BIT select
O11|2(3|14|5|6|7
010 1(0]1]0]1|BO
(O[O 1|Q|O]1]1|B1
O[O ||O|1]1] 1| B2

Bit set/reset flag
0 = Active

The eight possible combinations of the status of bits D3-D1 (B2,B1,B0) in the Bit Set-Reset
format (BSR) determine particular bit in PCO — PC7 being set or reset as per the status of bit DO.
A BSR word is to be written for each bit that is to be set or reset. For example if bit PC3 is to

be set and bit PC4 is to be reset, the appropriate BSR words that will have to be loaded into the
control register will be 0xxx0111 and Oxxx1000 respectively, where x is don’t care.

The BSR word can also be used for enabling or disabling interrupt signal generated by Port

C when the 8255 is programmed for Mode 1 or 2 operations. This is done by setting or resetting
the associated bits of the interrupts.

For 1/0 Modes

The mode definition format for input mode is shown in figure 8.5. The control words for both,
mode definition and bit set-reset are loaded into the same control register, with bit D7 used for
specifying whether the word loaded into the control register is a mode definition word or Bit
Set-Reset word.

Control word

D7 |DE|D5| D4 | D3| D2|D1|D0
— Group B

FPort C (Lower)

1 =Input
0 = Qutput
Port B
1 =Input
0 = Output
Mode selection
* 1 =Mode 0
1 = Mode 1
Group A
Port C (Upper)
p 1 =Input
0 = Output
Fort A
p| 1=Input
0 = Output
Maode selection
p| 00 =ModeO
01 = Mode 1
1% = Mode 2

Mode set flag
1 = Active

4

